Architectural Study of HOG Feature Extraction Processor for Real-Time Object Detection

Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, S. Izumi, H. Kawaguchi, M. Yoshimoto
{"title":"Architectural Study of HOG Feature Extraction Processor for Real-Time Object Detection","authors":"Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, S. Izumi, H. Kawaguchi, M. Yoshimoto","doi":"10.1109/SiPS.2012.57","DOIUrl":null,"url":null,"abstract":"This paper describes a Histogram of Oriented Gradients (HOG) feature extraction processor for HDTV resolution video (1920 × 1080 pixels). It features a simplified HOG algorithm with cell-based scanning and simultaneous Support Vector Machine (SVM) calculation, cell-based pipeline architecture, and parallelized modules. To evaluate the effectiveness of our approach, the proposed architecture is implemented onto a FPGA prototyping board. Results show that the proposed architecture can generate HOG features and detect objects with 40 MHz for SVGA resolution video (800 ~ 600 pixels) at 72 frames per second (fps). The proposed schemes are easily expandable to HDTV resolution video at 30 fps with 76.2 MHz if a high-resolution camera and higher operating frequency are available.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

This paper describes a Histogram of Oriented Gradients (HOG) feature extraction processor for HDTV resolution video (1920 × 1080 pixels). It features a simplified HOG algorithm with cell-based scanning and simultaneous Support Vector Machine (SVM) calculation, cell-based pipeline architecture, and parallelized modules. To evaluate the effectiveness of our approach, the proposed architecture is implemented onto a FPGA prototyping board. Results show that the proposed architecture can generate HOG features and detect objects with 40 MHz for SVGA resolution video (800 ~ 600 pixels) at 72 frames per second (fps). The proposed schemes are easily expandable to HDTV resolution video at 30 fps with 76.2 MHz if a high-resolution camera and higher operating frequency are available.
面向实时目标检测的HOG特征提取处理器体系结构研究
介绍了一种面向梯度直方图(Histogram of Oriented Gradients, HOG)特征提取处理器,用于HDTV分辨率视频(1920 × 1080像素)。它具有简化的HOG算法,具有基于细胞的扫描和同步支持向量机(SVM)计算,基于细胞的管道架构和并行模块。为了评估我们方法的有效性,我们在FPGA原型板上实现了所提出的架构。结果表明,该架构能够在72帧/秒(fps)的SVGA分辨率视频(800 ~ 600像素)中生成HOG特征并检测到40 MHz的目标。如果有高分辨率的摄像机和更高的工作频率,所提出的方案可以很容易地扩展到30fps的HDTV分辨率视频,频率为76.2 MHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信