Block Crossings in One-Sided Tanglegrams

Alexander Dobler, M. Nöllenburg
{"title":"Block Crossings in One-Sided Tanglegrams","authors":"Alexander Dobler, M. Nöllenburg","doi":"10.48550/arXiv.2305.04682","DOIUrl":null,"url":null,"abstract":"Tanglegrams are drawings of two rooted binary phylogenetic trees and a matching between their leaf sets. The trees are drawn crossing-free on opposite sides with their leaf sets facing each other on two vertical lines. Instead of minimizing the number of pairwise edge crossings, we consider the problem of minimizing the number of block crossings, that is, two bundles of lines crossing each other locally. With one tree fixed, the leaves of the second tree can be permuted according to its tree structure. We give a complete picture of the algorithmic complexity of minimizing block crossings in one-sided tanglegrams by showing NP-completeness, constant-factor approximations, and a fixed-parameter algorithm. We also state first results for non-binary trees.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tanglegrams are drawings of two rooted binary phylogenetic trees and a matching between their leaf sets. The trees are drawn crossing-free on opposite sides with their leaf sets facing each other on two vertical lines. Instead of minimizing the number of pairwise edge crossings, we consider the problem of minimizing the number of block crossings, that is, two bundles of lines crossing each other locally. With one tree fixed, the leaves of the second tree can be permuted according to its tree structure. We give a complete picture of the algorithmic complexity of minimizing block crossings in one-sided tanglegrams by showing NP-completeness, constant-factor approximations, and a fixed-parameter algorithm. We also state first results for non-binary trees.
单侧缠结图中的块交叉
缠结图是两个根的二元系统发育树和它们的叶集之间的匹配图。这些树被画在相对的两侧,它们的叶子在两条垂直线上相互面对。我们考虑的问题不是最小化成对边交叉的数量,而是最小化块交叉的数量,即两束线在局部相互交叉。一棵树固定后,第二棵树的叶子可以根据树的结构进行排列。通过展示np完备性、常因子近似和固定参数算法,我们给出了最小化单侧缠结图中块交叉的算法复杂性的完整图景。我们还陈述了非二叉树的第一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信