JavaScript Malicious Codes Analysis Based on Naive Bayes Classification

Yongle Hao, Hongliang Liang, Daijie Zhang, Qian Zhao, Baojiang Cui
{"title":"JavaScript Malicious Codes Analysis Based on Naive Bayes Classification","authors":"Yongle Hao, Hongliang Liang, Daijie Zhang, Qian Zhao, Baojiang Cui","doi":"10.1109/3PGCIC.2014.147","DOIUrl":null,"url":null,"abstract":"Given the security threats of JavaScript malicious codes attacks in the Internet environment, this paper presents a method that uses the Naive Bayes classification to analyze JavaScript malicious codes. The method uses many malicious and normal sample data, and trains the classifier using extended API symbol features with a high degree of predictability of malicious codes, which contain variable names, function names, string constants and comments extracted from the JavaScript codes. Experiments show that the analysis method of JavaScript malicious codes is effective and achieves high accuracy.","PeriodicalId":395610,"journal":{"name":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2014.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given the security threats of JavaScript malicious codes attacks in the Internet environment, this paper presents a method that uses the Naive Bayes classification to analyze JavaScript malicious codes. The method uses many malicious and normal sample data, and trains the classifier using extended API symbol features with a high degree of predictability of malicious codes, which contain variable names, function names, string constants and comments extracted from the JavaScript codes. Experiments show that the analysis method of JavaScript malicious codes is effective and achieves high accuracy.
基于朴素贝叶斯分类的JavaScript恶意代码分析
针对互联网环境下JavaScript恶意代码攻击的安全威胁,本文提出了一种利用朴素贝叶斯分类对JavaScript恶意代码进行分析的方法。该方法使用了大量恶意和正常的样本数据,并使用扩展的API符号特征来训练分类器,这些特征具有高度的恶意代码可预测性,这些特征包含从JavaScript代码中提取的变量名、函数名、字符串常量和注释。实验表明,该方法对JavaScript恶意代码的分析是有效的,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信