{"title":"An Approach for Detecting and Distinguishing Errors versus Attacks in Sensor Networks","authors":"C. Basile, M. Gupta, Z. Kalbarczyk, R. Iyer","doi":"10.1109/DSN.2006.11","DOIUrl":null,"url":null,"abstract":"Distributed sensor networks are highly prone to accidental errors and malicious activities, owing to their limited resources and tight interaction with the environment. Yet only a few studies have analyzed and coped with the effects of corrupted sensor data. This paper contributes with the proposal of an on-the-fly statistical technique that can detect and distinguish faulty data from malicious data in a distributed sensor network. Detecting faults and attacks is essential to ensure the correct semantic of the network, while distinguishing faults from attacks is necessary to initiate a correct recovery action. The approach uses hidden Markov models (HMMs) to capture the error/attack-free dynamics of the environment and the dynamics of error/attack data. It then performs a structural analysis of these HMMs to determine the type of error/attack affecting sensor observations. The methodology is demonstrated with real data traces collected over one month of observation from motes deployed on the Great Duck Island","PeriodicalId":228470,"journal":{"name":"International Conference on Dependable Systems and Networks (DSN'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks (DSN'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Distributed sensor networks are highly prone to accidental errors and malicious activities, owing to their limited resources and tight interaction with the environment. Yet only a few studies have analyzed and coped with the effects of corrupted sensor data. This paper contributes with the proposal of an on-the-fly statistical technique that can detect and distinguish faulty data from malicious data in a distributed sensor network. Detecting faults and attacks is essential to ensure the correct semantic of the network, while distinguishing faults from attacks is necessary to initiate a correct recovery action. The approach uses hidden Markov models (HMMs) to capture the error/attack-free dynamics of the environment and the dynamics of error/attack data. It then performs a structural analysis of these HMMs to determine the type of error/attack affecting sensor observations. The methodology is demonstrated with real data traces collected over one month of observation from motes deployed on the Great Duck Island