Model‐based clustering of time‐dependent categorical sequences with application to the analysis of major life event patterns

Yingying Zhang, Volodymyr Melnykov, Xuwen Zhu
{"title":"Model‐based clustering of time‐dependent categorical sequences with application to the analysis of major life event patterns","authors":"Yingying Zhang, Volodymyr Melnykov, Xuwen Zhu","doi":"10.1002/sam.11502","DOIUrl":null,"url":null,"abstract":"Clustering categorical sequences is a problem that arises in many fields. There is a few techniques available in this framework but none of them take into account the possible temporal character of transitions from one state to another. A mixture of Markov models is proposed, where transition probabilities are represented as functions of time. The corresponding expectation–maximization algorithm is discussed along with related computational challenges. The effectiveness of the proposed procedure is illustrated on the set of simulation studies, in which it outperforms four alternative approaches. The method is applied to major life event sequences from the British Household Panel Survey. As reflected by Bayesian Information Criterion, the proposed model demonstrates substantially better performance than its competitors. The analysis of obtained results and related transition probability plots reveals two groups of individuals: people with a conventional development of life course and those encountering some challenges.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering categorical sequences is a problem that arises in many fields. There is a few techniques available in this framework but none of them take into account the possible temporal character of transitions from one state to another. A mixture of Markov models is proposed, where transition probabilities are represented as functions of time. The corresponding expectation–maximization algorithm is discussed along with related computational challenges. The effectiveness of the proposed procedure is illustrated on the set of simulation studies, in which it outperforms four alternative approaches. The method is applied to major life event sequences from the British Household Panel Survey. As reflected by Bayesian Information Criterion, the proposed model demonstrates substantially better performance than its competitors. The analysis of obtained results and related transition probability plots reveals two groups of individuals: people with a conventional development of life course and those encountering some challenges.
基于模型的时间依赖分类序列聚类及其在主要生活事件模式分析中的应用
聚类分类序列是一个在许多领域都会遇到的问题。在这个框架中有一些可用的技术,但它们都没有考虑到从一种状态到另一种状态转换的可能的时间特征。提出了一种混合马尔可夫模型,其中转移概率表示为时间的函数。讨论了相应的期望最大化算法以及相关的计算挑战。在一组仿真研究中说明了所提出程序的有效性,其中它优于四种替代方法。该方法应用于英国家庭小组调查的主要生活事件序列。贝叶斯信息准则表明,该模型的性能明显优于同类模型。对所得结果和相关的转移概率图进行分析,可以发现两类个体:生命历程发展正常的人和遇到一些挑战的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信