Improving Performance of Sparse Matrix-Vector Multiplication

Ali Pinar, M. Heath
{"title":"Improving Performance of Sparse Matrix-Vector Multiplication","authors":"Ali Pinar, M. Heath","doi":"10.1145/331532.331562","DOIUrl":null,"url":null,"abstract":"Sparse matrix-vector multiplication (SpMxV) is one of the most important computational kernels in scientific computing. It often suffers from poor cache utilization and extra load operations because of memory indirections used to exploit sparsity. We propose alternative data structures, along with reordering algorithms to increase effectiveness of these data structures, to reduce the number of memory indirections. Toledo proposed handling the 1x2 blocks of a matrix separately, doing only one indirection for each block. We propose packing all contiguous nonzeros into a block to reduce the number of memory indirections further. This reduces memory indirections per block to one for the cost of an extra array in storage and a loop during SpMxV. We also propose an algorithm to permute the nonzeros of the matrix into contiguous locations. We state this problem as the traveling salesperson problem and use associated heuristics. Experiments verify the effectiveness of our techniques.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Sparse matrix-vector multiplication (SpMxV) is one of the most important computational kernels in scientific computing. It often suffers from poor cache utilization and extra load operations because of memory indirections used to exploit sparsity. We propose alternative data structures, along with reordering algorithms to increase effectiveness of these data structures, to reduce the number of memory indirections. Toledo proposed handling the 1x2 blocks of a matrix separately, doing only one indirection for each block. We propose packing all contiguous nonzeros into a block to reduce the number of memory indirections further. This reduces memory indirections per block to one for the cost of an extra array in storage and a loop during SpMxV. We also propose an algorithm to permute the nonzeros of the matrix into contiguous locations. We state this problem as the traveling salesperson problem and use associated heuristics. Experiments verify the effectiveness of our techniques.
改进稀疏矩阵-向量乘法的性能
稀疏矩阵向量乘法(SpMxV)是科学计算中最重要的计算内核之一。由于使用内存间接来利用稀疏性,它经常遭受缓存利用率低和额外负载操作的困扰。我们提出了替代数据结构,以及重新排序算法来提高这些数据结构的有效性,以减少内存间接的数量。托莱多建议单独处理矩阵的1x2块,每个块只做一次间接处理。我们建议将所有连续的非零打包到一个块中,以进一步减少内存间接操作的数量。这将每个块的内存间断性减少到一个,代价是存储中的额外数组和SpMxV期间的循环。我们还提出了一种将矩阵的非零排列到连续位置的算法。我们将这个问题描述为旅行推销员问题,并使用相关的启发式方法。实验验证了我们的技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信