Feature Selection of Support Vector Machine Based on Harmonious Cat Swarm Optimization

Kuan-Cheng Lin, Kaiyuan Zhang, J. C. Hung
{"title":"Feature Selection of Support Vector Machine Based on Harmonious Cat Swarm Optimization","authors":"Kuan-Cheng Lin, Kaiyuan Zhang, J. C. Hung","doi":"10.1109/U-MEDIA.2014.38","DOIUrl":null,"url":null,"abstract":"Cat Swarm Optimization Algorithm (CSO) is an optimization algorithm which proposed in 2006. Indicated by previous studies, CSO has good performance. We proposed a method to improve CSO and presenting a modified CSO named Harmonious-CSO (HCSO). The method is changing the concept of cat alert surroundings in seeking mode of CSO. We change the formula of seeking mode and add a concept of HS algorithm. In this paper, we use Support Vector Machine (SVM) be classifier combine with feature selection to verify the performance of algorithm. For the experimental results, the HCSO algorithm has a better solution than CSO.","PeriodicalId":174849,"journal":{"name":"2014 7th International Conference on Ubi-Media Computing and Workshops","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Conference on Ubi-Media Computing and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/U-MEDIA.2014.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cat Swarm Optimization Algorithm (CSO) is an optimization algorithm which proposed in 2006. Indicated by previous studies, CSO has good performance. We proposed a method to improve CSO and presenting a modified CSO named Harmonious-CSO (HCSO). The method is changing the concept of cat alert surroundings in seeking mode of CSO. We change the formula of seeking mode and add a concept of HS algorithm. In this paper, we use Support Vector Machine (SVM) be classifier combine with feature selection to verify the performance of algorithm. For the experimental results, the HCSO algorithm has a better solution than CSO.
基于和谐猫群优化的支持向量机特征选择
Cat Swarm Optimization Algorithm (CSO)是2006年提出的一种优化算法。以往的研究表明,CSO具有良好的性能。我们提出了一种改进CSO的方法,并提出了一种改进的CSO,命名为harmony -CSO (HCSO)。该方法改变了CSO搜索模式中猫警报环境的概念。我们改变了搜索模式的公式,增加了HS算法的概念。本文将支持向量机分类器与特征选择相结合来验证算法的性能。实验结果表明,HCSO算法比CSO算法具有更好的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信