On order relations between lower bounds on the MSE of unbiased estimators

K. Todros, J. Tabrikian
{"title":"On order relations between lower bounds on the MSE of unbiased estimators","authors":"K. Todros, J. Tabrikian","doi":"10.1109/ISIT.2010.5513333","DOIUrl":null,"url":null,"abstract":"Recently, some general classes of non-Bayesian, Bayesian and Hybrid lower bounds on the mean square error (MSE) of estimators have been developed via projection of each entry of the vector of estimation error on some Hilbert subspaces of L2. In this paper, we utilize this framework for derivation of order relations between lower bounds on the MSE of unbiased estimators. We show that some existing and new order relations can be simply obtained by comparing the corresponding Hilbert subspaces on which each entry of the vector of estimation error is projected.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, some general classes of non-Bayesian, Bayesian and Hybrid lower bounds on the mean square error (MSE) of estimators have been developed via projection of each entry of the vector of estimation error on some Hilbert subspaces of L2. In this paper, we utilize this framework for derivation of order relations between lower bounds on the MSE of unbiased estimators. We show that some existing and new order relations can be simply obtained by comparing the corresponding Hilbert subspaces on which each entry of the vector of estimation error is projected.
无偏估计量MSE下界之间的阶关系
最近,通过估计误差向量的每一项在L2的Hilbert子空间上的投影,得到了估计量均方误差(MSE)的非贝叶斯下界、贝叶斯下界和混合下界的一般分类。在本文中,我们利用这个框架来推导无偏估计量的MSE下界之间的阶关系。通过比较相应的Hilbert子空间,我们证明了一些现有的和新的阶关系可以简单地得到,其中估计误差向量的每一项都在对应的子空间上投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信