Acoustic emission signal feature analysis using type-2 fuzzy logic System

Qun Ren, L. Baron, M. Balazinski, K. Jemielniak
{"title":"Acoustic emission signal feature analysis using type-2 fuzzy logic System","authors":"Qun Ren, L. Baron, M. Balazinski, K. Jemielniak","doi":"10.1109/NAFIPS.2010.5548197","DOIUrl":null,"url":null,"abstract":"In this paper, type-2 fuzzy logic system is applied to analyse acoustic emission signal feature for tool condition monitoring in a tool micromilling process. To make the comparison and evaluation of AE signal features easier and more transparent, Type-2 fuzzy analysis is used as not only a powerful tool to model AE SFs, but also a great estimator for the ambiguities and uncertainties associated with them. Depend on the estimation of root-mean-square error (RMSE) and variations in modeling results of all signal features, reliable ones are selected and integrated into tool wear evaluation. A discussion and comparison of results is given.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, type-2 fuzzy logic system is applied to analyse acoustic emission signal feature for tool condition monitoring in a tool micromilling process. To make the comparison and evaluation of AE signal features easier and more transparent, Type-2 fuzzy analysis is used as not only a powerful tool to model AE SFs, but also a great estimator for the ambiguities and uncertainties associated with them. Depend on the estimation of root-mean-square error (RMSE) and variations in modeling results of all signal features, reliable ones are selected and integrated into tool wear evaluation. A discussion and comparison of results is given.
基于二类模糊逻辑系统的声发射信号特征分析
本文采用2型模糊逻辑系统对刀具微铣削过程中的声发射信号特征进行分析,用于刀具状态监测。为了使声发射信号特征的比较和评价更加容易和透明,二类模糊分析不仅是对声发射信号进行建模的有力工具,而且是对与之相关的模糊性和不确定性的一个很好的估计器。根据对所有信号特征的均方根误差(RMSE)估计和建模结果的变化,选择可靠的信号特征并将其集成到刀具磨损评估中。并对结果进行了讨论和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信