Application of Deep Learning Algorithm to Build an Automated Cloud Segmentation Model Based on Open Data Cube Framework

Pham Vu Dong, B. Thành, N. Q. Huy, Vo Hong Anh, Pham Van Manh
{"title":"Application of Deep Learning Algorithm to Build an Automated Cloud Segmentation Model Based on Open Data Cube Framework","authors":"Pham Vu Dong, B. Thành, N. Q. Huy, Vo Hong Anh, Pham Van Manh","doi":"10.25073/2588-1094/vnuees.4441","DOIUrl":null,"url":null,"abstract":"Cloud detection is a significant task in optical remote sensing to reconstruct the contaminated cloud area from multi-temporal satellite images. Besides, the rapid development of machine learning techniques, especially deep learning algorithms, can detect clouds over a large area in optical remote sensing data. In this study, the method based on the proposed deep-learning method called ODC-Cloud, which was built on convolutional blocks and integrating with the Open Data Cube (ODC) platform. The results showed that our proposed model achieved an overall 90% accuracy in detecting cloud in Landsat 8 OLI imagery and successfully integrated with the ODC to perform multi-scale and multi-temporal analysis. This is a pioneer study in techniques of storing and analyzing big optical remote sensing data.","PeriodicalId":247618,"journal":{"name":"VNU Journal of Science: Earth and Environmental Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Earth and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1094/vnuees.4441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud detection is a significant task in optical remote sensing to reconstruct the contaminated cloud area from multi-temporal satellite images. Besides, the rapid development of machine learning techniques, especially deep learning algorithms, can detect clouds over a large area in optical remote sensing data. In this study, the method based on the proposed deep-learning method called ODC-Cloud, which was built on convolutional blocks and integrating with the Open Data Cube (ODC) platform. The results showed that our proposed model achieved an overall 90% accuracy in detecting cloud in Landsat 8 OLI imagery and successfully integrated with the ODC to perform multi-scale and multi-temporal analysis. This is a pioneer study in techniques of storing and analyzing big optical remote sensing data.
应用深度学习算法构建基于开放数据立方体框架的自动云分割模型
从多时相卫星图像中重建污染云区是光学遥感中的一项重要任务。此外,机器学习技术,特别是深度学习算法的快速发展,可以在光学遥感数据中检测到大面积的云。在本研究中,基于所提出的深度学习方法ODC- cloud,该方法建立在卷积块上,并与开放数据立方体(Open Data Cube, ODC)平台集成。结果表明,该模型对Landsat 8 OLI图像的云检测总体准确率达到90%,并成功地与ODC集成进行了多尺度、多时间分析。这是光学遥感大数据存储与分析技术的开创性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信