Orientation estimation via low cost depth sensor ICP versus MEMS gyroscope sensor fusion

Thomas Calloway, D. Megherbi
{"title":"Orientation estimation via low cost depth sensor ICP versus MEMS gyroscope sensor fusion","authors":"Thomas Calloway, D. Megherbi","doi":"10.1109/ROMA.2014.7295857","DOIUrl":null,"url":null,"abstract":"Working implementations of 3D simultaneous localization and mapping (SLAM) using low cost depth sensors have exploded in popularity in recent years but remain limited in some important ways. In particular, they are not robust to rapid changes in orientation and can accumulate significant error with just a single gradual turn into a new scene. In this work we integrate and compare the Kinfu iterative closest point (ICP) based SLAM implementation from the Point Cloud Library with a hybrid optical-based inertial tracker (HObIT). In three separate experiments we find the HObIT to be far more accurate and robust to both slow and rapid changes in orientation. We therefore propose the integration of precision calibrated MEMS inertial sensors into existing low cost SLAM solutions for far more practical and robust solutions.","PeriodicalId":240232,"journal":{"name":"2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA.2014.7295857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Working implementations of 3D simultaneous localization and mapping (SLAM) using low cost depth sensors have exploded in popularity in recent years but remain limited in some important ways. In particular, they are not robust to rapid changes in orientation and can accumulate significant error with just a single gradual turn into a new scene. In this work we integrate and compare the Kinfu iterative closest point (ICP) based SLAM implementation from the Point Cloud Library with a hybrid optical-based inertial tracker (HObIT). In three separate experiments we find the HObIT to be far more accurate and robust to both slow and rapid changes in orientation. We therefore propose the integration of precision calibrated MEMS inertial sensors into existing low cost SLAM solutions for far more practical and robust solutions.
基于低成本深度传感器ICP的方向估计与MEMS陀螺仪传感器融合
近年来,使用低成本深度传感器的3D同步定位和测绘(SLAM)的工作实现得到了广泛的应用,但在一些重要方面仍然受到限制。特别是,它们对方向的快速变化不具有鲁棒性,并且可以在仅仅一次逐渐转向新场景时积累显著的误差。在这项工作中,我们将点云库中基于Kinfu迭代最近点(ICP)的SLAM实现与基于混合光学的惯性跟踪器(HObIT)进行了集成和比较。在三个独立的实验中,我们发现HObIT对于缓慢和快速的方向变化都更加准确和稳健。因此,我们建议将精密校准的MEMS惯性传感器集成到现有的低成本SLAM解决方案中,以获得更实用和更强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信