SVR-parameters selection for image watermarking

Chun-hua Li, Zheng-ding Lu, Ke Zhou
{"title":"SVR-parameters selection for image watermarking","authors":"Chun-hua Li, Zheng-ding Lu, Ke Zhou","doi":"10.1109/ICTAI.2005.119","DOIUrl":null,"url":null,"abstract":"An image digital watermarking technique using support vector regression (SVR) is proposed and researched in this paper. Firstly, the method of embedding and extracting watermarking from digital image is given. Then, the influence of SVR-learning parameters on the watermarking performance is analyzed, and the ideal value range of SVR-learning parameters for different images is given respectively. Finally, the results are validated with other images. Experimental results show that this technique can obtain good watermarking performance as well as good learning performance when RBF kernel is adopted with its width a from 8 to 10, balanceable parameter C from 0.8 to 1, insensitive parameter s from 0.008 to 0.01 respectively","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"55 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An image digital watermarking technique using support vector regression (SVR) is proposed and researched in this paper. Firstly, the method of embedding and extracting watermarking from digital image is given. Then, the influence of SVR-learning parameters on the watermarking performance is analyzed, and the ideal value range of SVR-learning parameters for different images is given respectively. Finally, the results are validated with other images. Experimental results show that this technique can obtain good watermarking performance as well as good learning performance when RBF kernel is adopted with its width a from 8 to 10, balanceable parameter C from 0.8 to 1, insensitive parameter s from 0.008 to 0.01 respectively
图像水印的svr参数选择
提出并研究了一种基于支持向量回归(SVR)的图像数字水印技术。首先,给出了数字图像中水印的嵌入和提取方法。然后,分析了svr学习参数对水印性能的影响,给出了不同图像下svr学习参数的理想取值范围。最后,用其他图像对结果进行验证。实验结果表明,当采用RBF核宽度a为8 ~ 10,可平衡参数C为0.8 ~ 1,不敏感参数s为0.008 ~ 0.01时,该技术可以获得良好的水印性能和学习性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信