Leveraging Personalized Sentiment Lexicons for Sentiment Analysis

Dominic Seyler, Jiaming Shen, Jinfeng Xiao, Yiren Wang, Chengxiang Zhai
{"title":"Leveraging Personalized Sentiment Lexicons for Sentiment Analysis","authors":"Dominic Seyler, Jiaming Shen, Jinfeng Xiao, Yiren Wang, Chengxiang Zhai","doi":"10.1145/3409256.3409850","DOIUrl":null,"url":null,"abstract":"We propose a novel personalized approach for the sentiment analysis task. The approach is based on the intuition that the same sentiment words can carry different sentiment weights for different users. For each user, we learn a language model over a sentiment lexicon to capture her writing style. We further correlate this user-specific language model with the user's historical ratings of reviews. Additionally, we discuss how two standard CNN and CNN+LSTM models can be improved by adding these user-based features. Our evaluation on the Yelp dataset shows that the proposed new personalized sentiment analysis features are effective.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel personalized approach for the sentiment analysis task. The approach is based on the intuition that the same sentiment words can carry different sentiment weights for different users. For each user, we learn a language model over a sentiment lexicon to capture her writing style. We further correlate this user-specific language model with the user's historical ratings of reviews. Additionally, we discuss how two standard CNN and CNN+LSTM models can be improved by adding these user-based features. Our evaluation on the Yelp dataset shows that the proposed new personalized sentiment analysis features are effective.
利用个性化情感词汇进行情感分析
我们为情感分析任务提出了一种新颖的个性化方法。该方法基于直觉,即相同的情感词对于不同的用户可以携带不同的情感权重。对于每个用户,我们学习一个情感词典上的语言模型来捕捉她的写作风格。我们进一步将这个特定于用户的语言模型与用户对评论的历史评分联系起来。此外,我们还讨论了如何通过添加这些基于用户的特征来改进两个标准CNN和CNN+LSTM模型。我们对Yelp数据集的评估表明,提出的新的个性化情感分析特征是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信