Optimising Equal Opportunity Fairness in Model Training

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin, Lea Frermann
{"title":"Optimising Equal Opportunity Fairness in Model Training","authors":"Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin, Lea Frermann","doi":"10.48550/arXiv.2205.02393","DOIUrl":null,"url":null,"abstract":"Real-world datasets often encode stereotypes and societal biases. Such biases can be implicitly captured by trained models, leading to biased predictions and exacerbating existing societal preconceptions. Existing debiasing methods, such as adversarial training and removing protected information from representations, have been shown to reduce bias. However, a disconnect between fairness criteria and training objectives makes it difficult to reason theoretically about the effectiveness of different techniques. In this work, we propose two novel training objectives which directly optimise for the widely-used criterion of equal opportunity, and show that they are effective in reducing bias while maintaining high performance over two classification tasks.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Real-world datasets often encode stereotypes and societal biases. Such biases can be implicitly captured by trained models, leading to biased predictions and exacerbating existing societal preconceptions. Existing debiasing methods, such as adversarial training and removing protected information from representations, have been shown to reduce bias. However, a disconnect between fairness criteria and training objectives makes it difficult to reason theoretically about the effectiveness of different techniques. In this work, we propose two novel training objectives which directly optimise for the widely-used criterion of equal opportunity, and show that they are effective in reducing bias while maintaining high performance over two classification tasks.
优化模型训练中的机会均等公平性
现实世界的数据集通常包含刻板印象和社会偏见。这种偏见可以被训练有素的模型含蓄地捕捉到,从而导致有偏见的预测,并加剧现有的社会先入之见。现有的消除偏见的方法,如对抗性训练和从表示中删除受保护的信息,已被证明可以减少偏见。然而,公平标准和训练目标之间的脱节使得从理论上推断不同技术的有效性变得困难。在这项工作中,我们提出了两个新的训练目标,它们直接优化了广泛使用的平等机会标准,并表明它们在减少偏见的同时有效地保持了两个分类任务的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信