A Heterogeneity-Aware Region-Level Data Layout for Hybrid Parallel File Systems

Shuibing He, Xian-He Sun, Yang Wang, Antonios Kougkas, Adnan Haider
{"title":"A Heterogeneity-Aware Region-Level Data Layout for Hybrid Parallel File Systems","authors":"Shuibing He, Xian-He Sun, Yang Wang, Antonios Kougkas, Adnan Haider","doi":"10.1109/ICPP.2015.43","DOIUrl":null,"url":null,"abstract":"Parallel file systems (PFS) are commonly used in high-end computing systems. With the emergence of solid state drives (SSD), hybrid PFSs, which consist of both HDD and SSD servers, provide a practical I/O system solution for data-intensive applications. However, most existing PFS layout schemes are inefficient for hybrid PFSs due to their lack of awareness of the performance differences between heterogeneous servers and the workload changes between different parts of a file. This lack of recognition can result in severe I/O performance degradation. In this study, we propose a heterogeneity-aware region-level (HARL) data layout scheme to improve the data distribution of a hybrid PFS. HARL first divides a file into fine-grained, varying sized regions according to the changes of an application's I/O workload, then chooses appropriate file stripe sizes on heterogeneous servers based on the server performance for each file region. Experimental results of representative benchmarks show that HARL can greatly improve the I/O system performance.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Parallel file systems (PFS) are commonly used in high-end computing systems. With the emergence of solid state drives (SSD), hybrid PFSs, which consist of both HDD and SSD servers, provide a practical I/O system solution for data-intensive applications. However, most existing PFS layout schemes are inefficient for hybrid PFSs due to their lack of awareness of the performance differences between heterogeneous servers and the workload changes between different parts of a file. This lack of recognition can result in severe I/O performance degradation. In this study, we propose a heterogeneity-aware region-level (HARL) data layout scheme to improve the data distribution of a hybrid PFS. HARL first divides a file into fine-grained, varying sized regions according to the changes of an application's I/O workload, then chooses appropriate file stripe sizes on heterogeneous servers based on the server performance for each file region. Experimental results of representative benchmarks show that HARL can greatly improve the I/O system performance.
混合并行文件系统的异构感知区域级数据布局
并行文件系统(PFS)通常用于高端计算系统。随着固态硬盘(SSD)的出现,混合pfs(由HDD和SSD服务器组成)为数据密集型应用程序提供了实用的I/O系统解决方案。然而,大多数现有的PFS布局方案对于混合PFS是低效的,因为它们缺乏对异构服务器之间的性能差异和文件不同部分之间的工作负载变化的认识。缺乏识别会导致严重的I/O性能下降。在这项研究中,我们提出了一种异构感知区域级(HARL)数据布局方案,以改善混合PFS的数据分布。HARL首先根据应用程序I/O工作负载的变化将文件划分为细粒度的大小不同的区域,然后根据每个文件区域的服务器性能在异构服务器上选择适当的文件条带大小。代表性基准测试的实验结果表明,HARL可以极大地提高I/O系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信