M. Silveira, Aline Mânica, João Victor Garcia de Souza, Cíntia Krilow, P. Ambrosi, C. Siepko, B. Bonadiman, M. Bagatini, D. T. R. E. Silva
{"title":"Exercise Changes Oxidative Profile and Purinergic Enzymes Activity in Kidney Disease","authors":"M. Silveira, Aline Mânica, João Victor Garcia de Souza, Cíntia Krilow, P. Ambrosi, C. Siepko, B. Bonadiman, M. Bagatini, D. T. R. E. Silva","doi":"10.11648/J.AJSS.20180604.17","DOIUrl":null,"url":null,"abstract":"Chronic Kidney Disease (CKD) patients are inactive and have reduced physical performance. The CKD lead to abnormalities in various systems including the hemostatic and oxidative systems. The platelet activation occurs with the participation of adenine nucleotides such as ATP and ADP. This nucleotides are part of a system calls purinergic signaling, that is a cell-cell communication pathway, present in several physiological mechanisms such as immune responses, pain, inflammation, cell proliferation, oxidative stress and platelet aggregation. In this work we evaluate the physical mobility, functional capacity and changes in oxidative profile and purinergic enzymes activity in patients with CKD during hemodialysis treatment before and after the protocol of resistance exercise (RE) development. Patients during hemodialysis section were recruited (n = 34). All patients underwent a RE three times a week for eight weeks. The data were analyzed in two moments: before the exercises (BE) and after the exercises (AE). Physical training significantly reduced the markers of oxidative stress after RE by increasing enzymatic and non-enzymatic antioxidant defenses. In addition, the activity of the enzymes of the purinergic system was significantly lower by ATP and AMP hydrolysis after RE. We showed, for the first time, that RE decreased significantly the oxidative stress markers after exercise when compared to previous exercise through increased enzymatic and non-enzymatic antioxidant defenses in CDK patients. These results reinforce the main role of RE in patients with chronic disease and future uses to increase the quality of life of CKD patients.","PeriodicalId":261831,"journal":{"name":"American Journal of Sports Science and Medicine","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Sports Science and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJSS.20180604.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Chronic Kidney Disease (CKD) patients are inactive and have reduced physical performance. The CKD lead to abnormalities in various systems including the hemostatic and oxidative systems. The platelet activation occurs with the participation of adenine nucleotides such as ATP and ADP. This nucleotides are part of a system calls purinergic signaling, that is a cell-cell communication pathway, present in several physiological mechanisms such as immune responses, pain, inflammation, cell proliferation, oxidative stress and platelet aggregation. In this work we evaluate the physical mobility, functional capacity and changes in oxidative profile and purinergic enzymes activity in patients with CKD during hemodialysis treatment before and after the protocol of resistance exercise (RE) development. Patients during hemodialysis section were recruited (n = 34). All patients underwent a RE three times a week for eight weeks. The data were analyzed in two moments: before the exercises (BE) and after the exercises (AE). Physical training significantly reduced the markers of oxidative stress after RE by increasing enzymatic and non-enzymatic antioxidant defenses. In addition, the activity of the enzymes of the purinergic system was significantly lower by ATP and AMP hydrolysis after RE. We showed, for the first time, that RE decreased significantly the oxidative stress markers after exercise when compared to previous exercise through increased enzymatic and non-enzymatic antioxidant defenses in CDK patients. These results reinforce the main role of RE in patients with chronic disease and future uses to increase the quality of life of CKD patients.