The Fuzzy Mortality Model based on Quaternion Theory

A. Szymanski, Agnieszka Rossa
{"title":"The Fuzzy Mortality Model based on Quaternion Theory","authors":"A. Szymanski, Agnieszka Rossa","doi":"10.5220/0006813201570165","DOIUrl":null,"url":null,"abstract":"The mortality models are of fundamental importance in many areas, such as the pension plans, the care of the elderly, the provision of health service, etc. In the paper, we propose a new class of mortality models based on a fuzzy version of the well-known Lee–Carter model (1992). Theoretical backgrounds are based on the algebraic approach to fuzzy numbers (Ishikawa, 1997, Kosiński, Prokopowicz, Ślęzak, 2003, Rossa, Socha, Szymański, 2015, Szymański, Rossa, 2014). The essential idea in our approach focuses on representing a membership function of a fuzzy number as an element of quaternion algebra. If the membership function μ(z) of a fuzzy number is strictly monotonic on two disjoint intervals, then it can be decomposed into strictly decreasing and strictly increasing functions Φ(z), Ψ(z), and the inverse functions f(u)=Φ−1(u) and g(u)=Ψ−1(u), u ∈ [0, 1] can be found. Thus, the membership function μ(z) can be represented by means of a complex-valued function f(u) + ig(u), where i is an imaginary unit. Then the pair (f, g) is a quaternion. The quaternion-valued, square integrable functions form a tool for constructing the new class of mortality models.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006813201570165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mortality models are of fundamental importance in many areas, such as the pension plans, the care of the elderly, the provision of health service, etc. In the paper, we propose a new class of mortality models based on a fuzzy version of the well-known Lee–Carter model (1992). Theoretical backgrounds are based on the algebraic approach to fuzzy numbers (Ishikawa, 1997, Kosiński, Prokopowicz, Ślęzak, 2003, Rossa, Socha, Szymański, 2015, Szymański, Rossa, 2014). The essential idea in our approach focuses on representing a membership function of a fuzzy number as an element of quaternion algebra. If the membership function μ(z) of a fuzzy number is strictly monotonic on two disjoint intervals, then it can be decomposed into strictly decreasing and strictly increasing functions Φ(z), Ψ(z), and the inverse functions f(u)=Φ−1(u) and g(u)=Ψ−1(u), u ∈ [0, 1] can be found. Thus, the membership function μ(z) can be represented by means of a complex-valued function f(u) + ig(u), where i is an imaginary unit. Then the pair (f, g) is a quaternion. The quaternion-valued, square integrable functions form a tool for constructing the new class of mortality models.
基于四元数理论的模糊死亡率模型
死亡率模型在许多领域,如养恤金计划、照顾老年人、提供保健服务等方面具有根本重要性。在本文中,我们基于著名的Lee-Carter模型(1992)的模糊版本提出了一类新的死亡率模型。理论背景基于模糊数的代数方法(Ishikawa, 1997, Kosiński, Prokopowicz, Ślęzak, 2003, Rossa, Socha, Szymański, 2015, Szymański, Rossa, 2014)。该方法的基本思想是将模糊数的隶属函数表示为四元数代数的一个元素。如果模糊数的隶属函数μ(z)在两个不相交区间上是严格单调的,则可以将其分解为严格递减和严格递增的函数Φ(z), Ψ(z),并且可以找到反函数f(u)=Φ−1(u)和g(u)=Ψ−1(u), u∈[0,1]。因此,隶属函数μ(z)可以用复值函数f(u) + ig(u)表示,其中i是虚单位。那么(f, g)是一个四元数。四元数值的平方可积函数构成了构造新一类死亡率模型的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信