{"title":"PENGGUNAAN ALGORITMA K-MEANS CLUSTERING UNTUK MENENTUKAN REKOMENDASI FILM INDONESIA","authors":"Elsa Vania, Salma Nuraini, Dhian Satria Yudha Kartika","doi":"10.33005/sitasi.v2i1.299","DOIUrl":null,"url":null,"abstract":"Seiring berkembangnya industri film, semakin banyak pula film yang diproduksi. Banyaknya film ini membuat penonton bimbang untuk memilih film mana yang akan ditonton. Penggunaan algoritma k-means clustering dapat membantu dalam mengelompokkan film berdasarkan karakteristiknya, sehingga penonton dapat memilah film dengan mudah. Tahapan klasterisasi dilakukan dengan metode CRISP-DM. Sedangkan algoritma yang diterapkan adalah K-Means. Dataset yang digunakan diambil dari kaggle yang berisi data film indonesia hasil scraping dari website IMDB dengan data film sebanyak 1272. Hasil dari tahapan klasterisasi ditemukan bahwa ada dua kelompok film yaitu film yang direkomendasikan dan film yang kurang direkomendasikan. Dari hasil klaster tersebut dapat menghasilkan rekomendasi film Indonesia yang mungkin bisa menjadi referensi untuk ditonton. ","PeriodicalId":326660,"journal":{"name":"Prosiding Seminar Nasional Teknologi dan Sistem Informasi","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Teknologi dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33005/sitasi.v2i1.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Seiring berkembangnya industri film, semakin banyak pula film yang diproduksi. Banyaknya film ini membuat penonton bimbang untuk memilih film mana yang akan ditonton. Penggunaan algoritma k-means clustering dapat membantu dalam mengelompokkan film berdasarkan karakteristiknya, sehingga penonton dapat memilah film dengan mudah. Tahapan klasterisasi dilakukan dengan metode CRISP-DM. Sedangkan algoritma yang diterapkan adalah K-Means. Dataset yang digunakan diambil dari kaggle yang berisi data film indonesia hasil scraping dari website IMDB dengan data film sebanyak 1272. Hasil dari tahapan klasterisasi ditemukan bahwa ada dua kelompok film yaitu film yang direkomendasikan dan film yang kurang direkomendasikan. Dari hasil klaster tersebut dapat menghasilkan rekomendasi film Indonesia yang mungkin bisa menjadi referensi untuk ditonton.