Factorization, reduction and embedding in integrable cellular automata

A. Kuniba, T. Takagi, A. Takenouchi
{"title":"Factorization, reduction and embedding in integrable cellular automata","authors":"A. Kuniba, T. Takagi, A. Takenouchi","doi":"10.1088/0305-4470/37/5/015","DOIUrl":null,"url":null,"abstract":"Factorized dynamics in soliton cellular automata with quantum group symmetry is identified with a motion of particles and anti-particles exhibiting pair creation and annihilation. An embedding scheme is presented showing that the D^{(1)}_n-automaton contains, as certain subsectors, the box-ball systems and all the other automata associated with the crystal bases of non-exceptional affine Lie algebras. The results extend the earlier ones to higher representations by a certain reduction and to a wider class of boundary conditions.","PeriodicalId":436460,"journal":{"name":"arXiv: Cellular Automata and Lattice Gases","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/37/5/015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Factorized dynamics in soliton cellular automata with quantum group symmetry is identified with a motion of particles and anti-particles exhibiting pair creation and annihilation. An embedding scheme is presented showing that the D^{(1)}_n-automaton contains, as certain subsectors, the box-ball systems and all the other automata associated with the crystal bases of non-exceptional affine Lie algebras. The results extend the earlier ones to higher representations by a certain reduction and to a wider class of boundary conditions.
可积元胞自动机的分解、约简与嵌入
具有量子群对称的孤子元胞自动机的因式动力学被识别为粒子和反粒子的运动,表现为对产生和湮灭。提出了一种嵌入方案,证明了D^{(1)}_n自动机作为某些子扇区包含了盒球系统和与非例外仿射李代数晶体基相关的所有其他自动机。通过一定的约简和更广泛的边界条件类别,将先前的结果扩展到更高的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信