Vision Powered Conversational AI for Easy Human Dialogue Systems

Bipendra Basnyat, Neha Singh, Nirmalya Roy, A. Gangopadhyay
{"title":"Vision Powered Conversational AI for Easy Human Dialogue Systems","authors":"Bipendra Basnyat, Neha Singh, Nirmalya Roy, A. Gangopadhyay","doi":"10.1109/MASS50613.2020.00088","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an end to end goal-oriented conversational AI agent that can provide contextual information from a potential hazard site. We posit the conversational agent as a FloodBot capable of seeing, sensing, assessing hazard condition, and ultimately conversing about them. We present our domain-specific FloodBot design-solution and learning-experience from the real-time deployment in a flash flood devastated city that uses state-of-the-art deep learning models. We specifically used computer vision and pertinent natural language processing technologies to empower the conversation power of the FloodBot. To deliver such practical and usable AI, we chain multiple deep learning frameworks and create a human-friendly question-answer based dialogue system. We present our deployment details from the last five months and validate the results using ongoing COVID19’s impact on the area as well.","PeriodicalId":105795,"journal":{"name":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS50613.2020.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an end to end goal-oriented conversational AI agent that can provide contextual information from a potential hazard site. We posit the conversational agent as a FloodBot capable of seeing, sensing, assessing hazard condition, and ultimately conversing about them. We present our domain-specific FloodBot design-solution and learning-experience from the real-time deployment in a flash flood devastated city that uses state-of-the-art deep learning models. We specifically used computer vision and pertinent natural language processing technologies to empower the conversation power of the FloodBot. To deliver such practical and usable AI, we chain multiple deep learning frameworks and create a human-friendly question-answer based dialogue system. We present our deployment details from the last five months and validate the results using ongoing COVID19’s impact on the area as well.
用于简单的人类对话系统的视觉驱动会话AI
在本文中,我们提出了一个端到端目标导向的会话AI代理,可以从潜在的危险现场提供上下文信息。我们假设对话代理是一个洪水机器人,能够看到、感知、评估危险状况,并最终就它们进行对话。我们展示了我们的特定领域的FloodBot设计解决方案和学习经验,通过使用最先进的深度学习模型,在山洪暴发的城市中进行实时部署。我们特别使用了计算机视觉和相关的自然语言处理技术来增强FloodBot的对话能力。为了提供这种实用和可用的人工智能,我们链接了多个深度学习框架,并创建了一个人性化的基于问答的对话系统。我们展示了过去五个月的部署细节,并利用covid - 19对该地区的持续影响来验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信