The Whale Optimization Algorithm Based on Speed-Up Robust Feature to Improve the Speed of Object Searching

Jui-Chuan Cheng, Meng-Tang Guo
{"title":"The Whale Optimization Algorithm Based on Speed-Up Robust Feature to Improve the Speed of Object Searching","authors":"Jui-Chuan Cheng, Meng-Tang Guo","doi":"10.1109/ISPACS51563.2021.9650998","DOIUrl":null,"url":null,"abstract":"Speed-Up Robust Feature (SURF) is one of the methods for extracting image features and matching. This paper proposes the object search method based on the whale optimization algorithm that inherits the previous global best value (IGP-WOA), which has the advantages of fast convergence and multiple search methods. In addition, we use integral images to find the fitness value (IGP-WOA-CII) in the target function calculation, thereby reducing the time spent on SURF extraction and matching.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9650998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Speed-Up Robust Feature (SURF) is one of the methods for extracting image features and matching. This paper proposes the object search method based on the whale optimization algorithm that inherits the previous global best value (IGP-WOA), which has the advantages of fast convergence and multiple search methods. In addition, we use integral images to find the fitness value (IGP-WOA-CII) in the target function calculation, thereby reducing the time spent on SURF extraction and matching.
基于加速鲁棒特征的鲸鱼优化算法提高目标搜索速度
加速鲁棒特征(SURF)是提取图像特征并进行匹配的方法之一。本文提出了一种基于继承先前全局最优值(IGP-WOA)的鲸鱼优化算法的目标搜索方法,该方法具有收敛速度快、搜索方法多的优点。此外,我们使用积分图像在目标函数计算中寻找适应度值(IGP-WOA-CII),从而减少SURF提取和匹配所花费的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信