Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning

Pengfei Gu, J. Han, D. Chen, Chaoli Wang
{"title":"Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning","authors":"Pengfei Gu, J. Han, D. Chen, Chaoli Wang","doi":"10.1109/PacificVis53943.2022.00012","DOIUrl":null,"url":null,"abstract":"We introduce Scalar2Vec, a new deep learning solution that translates scalar fields to velocity vector fields for scientific visualization. Given multivariate or ensemble scalar field volumes and their velocity vector field counterparts, Scalar2Vec first identifies suitable variables for scalar-to-vector translation. It then leverages a k-complete bipartite translation network (kCBT-Net) to complete the translation task. kCBT-Net takes a set of sampled scalar volumes of the same variable as input, extracts their multi -scale information, and learns to synthesize the corresponding vector volumes. Ground-truth vector fields and their derived quantities are utilized for loss computation and network training. After training, Scalar2Vec can infer unseen velocity vector fields of the same data set directly from their scalar field counterparts. We demonstrate the effectiveness of Scalar2Vec with quantitative and qualitative results on multiple data sets and compare it with three other state-of-the-art deep learning methods.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis53943.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Scalar2Vec, a new deep learning solution that translates scalar fields to velocity vector fields for scientific visualization. Given multivariate or ensemble scalar field volumes and their velocity vector field counterparts, Scalar2Vec first identifies suitable variables for scalar-to-vector translation. It then leverages a k-complete bipartite translation network (kCBT-Net) to complete the translation task. kCBT-Net takes a set of sampled scalar volumes of the same variable as input, extracts their multi -scale information, and learns to synthesize the corresponding vector volumes. Ground-truth vector fields and their derived quantities are utilized for loss computation and network training. After training, Scalar2Vec can infer unseen velocity vector fields of the same data set directly from their scalar field counterparts. We demonstrate the effectiveness of Scalar2Vec with quantitative and qualitative results on multiple data sets and compare it with three other state-of-the-art deep learning methods.
Scalar2Vec:通过深度学习将标量场转换为向量场
我们介绍Scalar2Vec,一个新的深度学习解决方案,将标量场转换为速度矢量场,用于科学可视化。给定多变量或集合标量场体积及其速度矢量场对应体,Scalar2Vec首先确定适合标量到矢量转换的变量。然后利用k-完备二部翻译网络(kCBT-Net)完成翻译任务。kCBT-Net以一组相同变量的采样标量体积作为输入,提取其多尺度信息,并学习合成相应的向量体积。在损失计算和网络训练中,利用真地向量场及其导出量。经过训练后,Scalar2Vec可以直接从对应的标量场中推断出同一数据集的未见速度向量场。我们在多个数据集上用定量和定性结果证明了Scalar2Vec的有效性,并将其与其他三种最先进的深度学习方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信