Clécio Elias Silva e Silva, Salomão Mafalda Machado, Ana Beatriz Alvarez, R. Chavez
{"title":"PavicNet-MC: Um modelo de classificação multilabel aplicado em ultrassonografia pulmonar","authors":"Clécio Elias Silva e Silva, Salomão Mafalda Machado, Ana Beatriz Alvarez, R. Chavez","doi":"10.5753/sbcas.2023.230067","DOIUrl":null,"url":null,"abstract":"Nos últimos anos as consequências da Covid-19 e outras doenças pulmonares vem causando um aumento na demanda pelos serviços de saúde, o diagnóstico precoce e preciso dessas doenças é essencial para a recuperação dos pacientes. Este artigo propõe um modelo de classificação multirrótulo, denominado PavicNet-MC. Este modelo foi desenvolvido com a motivação de identificar cinco características visíveis em ultrassonografia pulmonar. O modelo proposto obteve uma precisão de 99% na classificação das cinco características. Resultados mostram que o modelo proposto é altamente eficaz na detecção e monitoramento das características visíveis que se correlacionam com doenças pulmonares, e possui uma complexidade relativamente baixa em comparação com outras arquiteturas encontradas na literatura.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.230067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nos últimos anos as consequências da Covid-19 e outras doenças pulmonares vem causando um aumento na demanda pelos serviços de saúde, o diagnóstico precoce e preciso dessas doenças é essencial para a recuperação dos pacientes. Este artigo propõe um modelo de classificação multirrótulo, denominado PavicNet-MC. Este modelo foi desenvolvido com a motivação de identificar cinco características visíveis em ultrassonografia pulmonar. O modelo proposto obteve uma precisão de 99% na classificação das cinco características. Resultados mostram que o modelo proposto é altamente eficaz na detecção e monitoramento das características visíveis que se correlacionam com doenças pulmonares, e possui uma complexidade relativamente baixa em comparação com outras arquiteturas encontradas na literatura.