A robust data scaling algorithm for gene expression classification

X. Cao, Z. Obradovic
{"title":"A robust data scaling algorithm for gene expression classification","authors":"X. Cao, Z. Obradovic","doi":"10.1109/BIBE.2015.7367734","DOIUrl":null,"url":null,"abstract":"Gene expression data are widely used in classification tasks for medical diagnosis. Data scaling is recommended and helpful for learning the classification models. In this study, we propose a data scaling algorithm to transform the data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative density function of the data. The proposed algorithm is robust to outliers, and experimental results show that models learned using data scaled by the proposed algorithm generally outperform the ones using min-max mapping and z-score which are currently the most commonly used data scaling algorithms.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Gene expression data are widely used in classification tasks for medical diagnosis. Data scaling is recommended and helpful for learning the classification models. In this study, we propose a data scaling algorithm to transform the data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative density function of the data. The proposed algorithm is robust to outliers, and experimental results show that models learned using data scaled by the proposed algorithm generally outperform the ones using min-max mapping and z-score which are currently the most commonly used data scaling algorithms.
一种用于基因表达分类的稳健数据缩放算法
基因表达数据广泛应用于医学诊断的分类任务中。数据缩放是推荐的,它有助于学习分类模型。在本研究中,我们提出了一种数据缩放算法,通过学习广义逻辑函数来拟合数据的经验累积密度函数,将数据统一转换到合适的区间。该算法对异常值具有鲁棒性,实验结果表明,使用该算法缩放的数据学习的模型总体上优于目前最常用的数据缩放算法——最小-最大映射和z-score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信