One-dimensional Color-level Co-occurrence matrices

M. Benco, R. Hudec, S. Matuska, M. Zachariasova
{"title":"One-dimensional Color-level Co-occurrence matrices","authors":"M. Benco, R. Hudec, S. Matuska, M. Zachariasova","doi":"10.1109/ELEKTRO.2012.6225600","DOIUrl":null,"url":null,"abstract":"The texture feature extraction plays important role in image analysis. This paper deals with improvement of the one-dimensional version of GLCM (Gray Level Cooccurrence Matrix). In our approach, the color information of texture was taken into consideration. The novel One dimensional Color Level Co-occurrence Matrix (1D-CLCM) are designed. Performances of proposed method are verified on database of 2600 color images. Experimental results demonstrated that 1D-CLCM is more effective compared to one-dimensional and original GLCM for image retrieval.","PeriodicalId":343071,"journal":{"name":"2012 ELEKTRO","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO.2012.6225600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The texture feature extraction plays important role in image analysis. This paper deals with improvement of the one-dimensional version of GLCM (Gray Level Cooccurrence Matrix). In our approach, the color information of texture was taken into consideration. The novel One dimensional Color Level Co-occurrence Matrix (1D-CLCM) are designed. Performances of proposed method are verified on database of 2600 color images. Experimental results demonstrated that 1D-CLCM is more effective compared to one-dimensional and original GLCM for image retrieval.
一维色级共现矩阵
纹理特征提取在图像分析中起着重要的作用。本文研究了一维灰度共生矩阵(GLCM)的改进。在我们的方法中,考虑了纹理的颜色信息。设计了一种新的一维色阶共现矩阵(1D-CLCM)。在2600张彩色图像数据库上验证了该方法的有效性。实验结果表明,与一维和原始GLCM相比,1D-CLCM在图像检索方面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信