Predicting Runway Configuration Transition Timings Using Machine Learning Methods

Max En Cheng Lau, A. Lam, S. Alam
{"title":"Predicting Runway Configuration Transition Timings Using Machine Learning Methods","authors":"Max En Cheng Lau, A. Lam, S. Alam","doi":"10.1109/WSC52266.2021.9715492","DOIUrl":null,"url":null,"abstract":"Runway configuration change is one of the major factors effecting runway capacity. The transition-time required to change from one runway configuration to another is a key concern in optimising runway configuration. This study formulates prediction of runway transition timings as machine learning regression problem by using an ensemble of regressors which provides continuous estimates using flight trajectories, meteorological data, current and past runway configurations and active STAR routes. The data consolidation and feature engineering convert heterogeneous sources of data and includes a clustering-based prediction of arrival runways on with an 89.9% validity rate. The proposed model is applied on PHL airport with 4 runways and 23 possible configurations. The 6 major runways configuration changes modelled using Random Forest Regressor achieved R2 scores of at least 0.8 and median RMSE of 18.8 minutes, highlighting the predictive power of Machine Learning approach, for informed decision-making in runway configuration change management.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Runway configuration change is one of the major factors effecting runway capacity. The transition-time required to change from one runway configuration to another is a key concern in optimising runway configuration. This study formulates prediction of runway transition timings as machine learning regression problem by using an ensemble of regressors which provides continuous estimates using flight trajectories, meteorological data, current and past runway configurations and active STAR routes. The data consolidation and feature engineering convert heterogeneous sources of data and includes a clustering-based prediction of arrival runways on with an 89.9% validity rate. The proposed model is applied on PHL airport with 4 runways and 23 possible configurations. The 6 major runways configuration changes modelled using Random Forest Regressor achieved R2 scores of at least 0.8 and median RMSE of 18.8 minutes, highlighting the predictive power of Machine Learning approach, for informed decision-making in runway configuration change management.
使用机器学习方法预测跑道配置过渡时间
跑道形态变化是影响跑道容量的主要因素之一。从一种跑道配置转换到另一种跑道配置所需的过渡时间是优化跑道配置的关键问题。本研究将跑道过渡时间的预测作为机器学习回归问题,通过使用一系列回归量来提供连续的估计,这些回归量使用飞行轨迹、气象数据、当前和过去的跑道配置以及活跃的STAR航线。数据整合和特征工程转换了异构数据源,包括基于聚类的到达跑道预测,有效性为89.9%。将该模型应用于具有4条跑道和23种可能配置的PHL机场。使用随机森林回归器建模的6个主要跑道配置更改的R2得分至少为0.8,中位数RMSE为18.8分钟,突出了机器学习方法在跑道配置更改管理中明智决策的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信