On skew-cyclic codes over GR(4, 2) + uGR(4, 2)

Amit K. Sharma, Maheshanand Bhaintwal
{"title":"On skew-cyclic codes over GR(4, 2) + uGR(4, 2)","authors":"Amit K. Sharma, Maheshanand Bhaintwal","doi":"10.1109/IWSDA.2015.7458413","DOIUrl":null,"url":null,"abstract":"In this paper, we study skew-cyclic codes over the ring R = GR(4, 2) + uGR(4, 2), u2 = u, where GR(4, 2) is the Galois extension of ℤ4 of degree 2. We describe some structural properties of skew polynomial ring R[x, θ], where θ is an automorphism of R. A sufficient condition for skew cyclic codes over R to be free is presented. It is shown that skew-cyclic codes over R are either equivalent to cyclic codes or to quasi-cyclic codes. A brief description of the duals of these codes is also presented. We define a Gray map from R to [GR(4, 2)]2, and show that the Gray image of a skew-cyclic codes over R is a skew 2-quasi cyclic code over GR(4, 2).","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study skew-cyclic codes over the ring R = GR(4, 2) + uGR(4, 2), u2 = u, where GR(4, 2) is the Galois extension of ℤ4 of degree 2. We describe some structural properties of skew polynomial ring R[x, θ], where θ is an automorphism of R. A sufficient condition for skew cyclic codes over R to be free is presented. It is shown that skew-cyclic codes over R are either equivalent to cyclic codes or to quasi-cyclic codes. A brief description of the duals of these codes is also presented. We define a Gray map from R to [GR(4, 2)]2, and show that the Gray image of a skew-cyclic codes over R is a skew 2-quasi cyclic code over GR(4, 2).
GR(4,2) + uGR(4,2)上的斜循环码
本文研究了环R = GR(4,2) + uGR(4,2), u2 = u上的斜循环码,其中GR(4,2)是2次的lg4的伽罗瓦扩展。讨论了斜多项式环R[x, θ]的一些结构性质,其中θ是R的自同构,给出了R上的斜循环码自由的充分条件。证明了R上的斜循环码或等价于循环码或等价于拟循环码。本文还简要介绍了这些代码的对偶。我们定义了一个从R到[GR(4,2)]2的Gray映射,并证明了R上的一个斜循环码的Gray图像是GR(4,2)上的一个斜2-拟循环码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信