2 Model order reduction by proper orthogonal decomposition

Carmen Gräßle, M. Hinze, S. Volkwein
{"title":"2 Model order reduction by proper orthogonal decomposition","authors":"Carmen Gräßle, M. Hinze, S. Volkwein","doi":"10.1515/9783110671490-002","DOIUrl":null,"url":null,"abstract":": We provide an introduction to proper orthogonal decomposition (POD) model order reduction with focus on (nonlinear) parametric partial differential equations (PDEs) and (nonlinear) time-dependent PDEs, and PDE-constrained optimization with POD surrogate models as application. We cover the relation of POD and singular value decomposition, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.","PeriodicalId":229517,"journal":{"name":"Snapshot-Based Methods and Algorithms","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Snapshot-Based Methods and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110671490-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: We provide an introduction to proper orthogonal decomposition (POD) model order reduction with focus on (nonlinear) parametric partial differential equations (PDEs) and (nonlinear) time-dependent PDEs, and PDE-constrained optimization with POD surrogate models as application. We cover the relation of POD and singular value decomposition, POD from the infinite-dimensional perspective, reduction of nonlinearities, certification with a priori and a posteriori error estimates, spatial and temporal adaptivity, input dependency of the POD surrogate model, POD basis update strategies in optimal control with surrogate models, and sketch related algorithmic frameworks. The perspective of the method is demonstrated with several numerical examples.
2适当正交分解模型降阶
我们介绍了适当的正交分解(POD)模型降阶,重点是(非线性)参数偏微分方程(PDEs)和(非线性)时变偏微分方程(PDEs),以及以POD代理模型为应用的pde约束优化。我们涵盖了POD与奇异值分解的关系,无限维视角下的POD,非线性的约简,先验和后验误差估计的证明,时空自适应,POD代理模型的输入依赖性,代理模型最优控制中的POD基更新策略,以及草图相关的算法框架。通过数值算例说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信