{"title":"A Framework for Mapping Dynamic Virtual Kernels onto Heterogeneous Reconfigurable Platforms","authors":"H. Sidiropoulos, K. Siozios, D. Soudris","doi":"10.1109/IPDPSW.2014.23","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays (FPGAs) promise a low power flexible alternative for today's market heterogeneous systems. In order to be widely accepted, novel solutions and approaches are required for fast and flexible application implementation. In this paper we propose a methodology, as well as the supporting toolflow targeting to provide fast implementation of multiple applications onto heterogeneous FPGAs. For this purpose we introduce the concept of dynamic virtual kernels. Experimental results prove the efficiency of the introduced solution, as we achieve application's mapping 30× faster on average compared to a state-of-art approach, with negligible performance degradation. Additionally, we enable the dynamic mapping of multiple applications onto a single FPGA with only a small penalty of 4.7% in the maximum operation frequency of those applications compared with our reference solution.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Field Programmable Gate Arrays (FPGAs) promise a low power flexible alternative for today's market heterogeneous systems. In order to be widely accepted, novel solutions and approaches are required for fast and flexible application implementation. In this paper we propose a methodology, as well as the supporting toolflow targeting to provide fast implementation of multiple applications onto heterogeneous FPGAs. For this purpose we introduce the concept of dynamic virtual kernels. Experimental results prove the efficiency of the introduced solution, as we achieve application's mapping 30× faster on average compared to a state-of-art approach, with negligible performance degradation. Additionally, we enable the dynamic mapping of multiple applications onto a single FPGA with only a small penalty of 4.7% in the maximum operation frequency of those applications compared with our reference solution.