Optimal Number of Clusters for Fast Similarity Search Considering Transformations of Time Varying Data

Toshiichiro Iwashita, T. Hochin, Hiroki Nomiya
{"title":"Optimal Number of Clusters for Fast Similarity Search Considering Transformations of Time Varying Data","authors":"Toshiichiro Iwashita, T. Hochin, Hiroki Nomiya","doi":"10.2991/ijndc.2015.3.2.2","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of determining the optimal number of clusters dividing the multiple transformations for the purpose of the efficient processing of query against the results of applying the transformations to time series. In this paper, the moving average is used as a transformation for simplicity. The model of query time to the number of clusters is constructed for determining the optimal number of clusters. As the query time could be represented with the concave function of the number of clusters, it is shown that the optimal number of clusters for the best query time can be obtained. The verification experiment confirms the validity of the model constructed. It is revealed that the optimal number of clusters could be determined by the times obtained from a single query execution.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.2015.3.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method of determining the optimal number of clusters dividing the multiple transformations for the purpose of the efficient processing of query against the results of applying the transformations to time series. In this paper, the moving average is used as a transformation for simplicity. The model of query time to the number of clusters is constructed for determining the optimal number of clusters. As the query time could be represented with the concave function of the number of clusters, it is shown that the optimal number of clusters for the best query time can be obtained. The verification experiment confirms the validity of the model constructed. It is revealed that the optimal number of clusters could be determined by the times obtained from a single query execution.
考虑时变数据变换的快速相似搜索的最优聚类数
本文提出了一种确定划分多个变换的最优簇数的方法,目的是根据时间序列的变换结果高效地处理查询。为了简单起见,本文使用移动平均作为变换。为了确定最优簇数,建立了查询时间与簇数的关系模型。由于查询时间可以用簇数的凹函数表示,因此可以得到最佳查询时间下的最优簇数。验证实验证实了所构建模型的有效性。结果表明,集群的最优数量可以由单个查询执行的次数决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信