Predicting gene function by combining expression and interaction data

R. V. Berlo, L. Wessels, S. Martes, M. Reinders
{"title":"Predicting gene function by combining expression and interaction data","authors":"R. V. Berlo, L. Wessels, S. Martes, M. Reinders","doi":"10.1109/CSBW.2005.111","DOIUrl":null,"url":null,"abstract":"In this study we combined the spurious protein interaction data from the Database of Interacting Proteins with the recently published gene expression data of S. cerevisiae grown with limited nutrient limitations under different physical/chemical conditions (Tai et al.) in order to predict protein interactions and protein functions with more confidence. Because proteins often have multiple functional annotations, we propose to employ a continuous metric (e.g. the cosine angle) for measuring functional similarity. We show that it is possible to extract multiple functional associations of a gene, but only by applying a strict Pearson correlation threshold on the gene expression data. Using this strategy, we were able to predict the function of six formally unclassified proteins. Additionally, we revealed six small networks of interacting proteins. These networks strongly match with existing biological knowledge. Furthermore, transcription factors could be assigned to four of these interaction networks by employing a recently published transcription database (Harbison et al.).","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study we combined the spurious protein interaction data from the Database of Interacting Proteins with the recently published gene expression data of S. cerevisiae grown with limited nutrient limitations under different physical/chemical conditions (Tai et al.) in order to predict protein interactions and protein functions with more confidence. Because proteins often have multiple functional annotations, we propose to employ a continuous metric (e.g. the cosine angle) for measuring functional similarity. We show that it is possible to extract multiple functional associations of a gene, but only by applying a strict Pearson correlation threshold on the gene expression data. Using this strategy, we were able to predict the function of six formally unclassified proteins. Additionally, we revealed six small networks of interacting proteins. These networks strongly match with existing biological knowledge. Furthermore, transcription factors could be assigned to four of these interaction networks by employing a recently published transcription database (Harbison et al.).
结合表达和相互作用数据预测基因功能
在本研究中,我们将相互作用蛋白质数据库中的虚假蛋白质相互作用数据与最近发表的在不同物理/化学条件下有限营养条件下生长的酿酒酵母的基因表达数据(Tai等)相结合,以便更有信心地预测蛋白质相互作用和蛋白质功能。由于蛋白质通常有多个功能注释,我们建议使用连续度量(例如余弦角)来测量功能相似性。我们表明,提取一个基因的多个功能关联是可能的,但只有通过对基因表达数据应用严格的Pearson相关阈值。使用这种策略,我们能够预测六种正式未分类的蛋白质的功能。此外,我们还发现了6个相互作用蛋白质的小网络。这些网络与现有的生物学知识紧密匹配。此外,通过使用最近发表的转录数据库,转录因子可以分配到这些相互作用网络中的四个(Harbison等人)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信