Pål Grønås Drange, F. Reidl, Fernando Sánchez Villaamil, S. Sikdar
{"title":"Fast Biclustering by Dual Parameterization","authors":"Pål Grønås Drange, F. Reidl, Fernando Sánchez Villaamil, S. Sikdar","doi":"10.4230/LIPIcs.IPEC.2015.402","DOIUrl":null,"url":null,"abstract":"We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. \nMisra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. \nHowever, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time $2^{5 \\sqrt{pk}} + O(n+m)$ for p-Starforest Editing and $2^{O(p \\sqrt{k} \\log(pk))} + O(n+m)$ for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. \nOur results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2015.402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails.
Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution.
However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time $2^{5 \sqrt{pk}} + O(n+m)$ for p-Starforest Editing and $2^{O(p \sqrt{k} \log(pk))} + O(n+m)$ for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant.
Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.