{"title":"The application of deep learning in communication signal modulation recognition","authors":"Yun Lin, Ya Tu, Z. Dou, Zhiqiang Wu","doi":"10.1109/ICCChina.2017.8330488","DOIUrl":null,"url":null,"abstract":"Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). We also notice that Deep Learning (DL) is a powerful classification tool that has gained great popularity in various field. This article focuses on DL and aims at using it to solve communications problems. We propose a new data conversion algorithm in order to gain a better classification accuracy of communication signal modulation. This paper will show that our new method will bring significant improvement in signal modulation classification accuracy. Besides, AlexNet and GoogLeNet, two well-known DL network models, ResNet and VGG, will be utilized in this task to compare with each other.","PeriodicalId":418396,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"6 42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2017.8330488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). We also notice that Deep Learning (DL) is a powerful classification tool that has gained great popularity in various field. This article focuses on DL and aims at using it to solve communications problems. We propose a new data conversion algorithm in order to gain a better classification accuracy of communication signal modulation. This paper will show that our new method will bring significant improvement in signal modulation classification accuracy. Besides, AlexNet and GoogLeNet, two well-known DL network models, ResNet and VGG, will be utilized in this task to compare with each other.