Criteria Chains: A Novel Multi-Criteria Recommendation Approach

Yong Zheng
{"title":"Criteria Chains: A Novel Multi-Criteria Recommendation Approach","authors":"Yong Zheng","doi":"10.1145/3025171.3025215","DOIUrl":null,"url":null,"abstract":"Recommender systems (RSs) have been successfully applied to alleviate the problem of information overload and assist users' decision makings. Multi-criteria recommender systems is one of the RSs which utilizes users' multiple ratings on different aspects of the items (i.e., multi-criteria ratings) to predict user preferences. Traditional approaches usually predict ratings on each criterion individually and aggregate them together to estimate the user preferences. In this paper, we propose an approach named as \"Criteria Chains\", where each combination of the criteria can be utilized in a way of contextual situations in order to better predict the multi-criteria ratings. Our experimental results based on the TripAdvisor and YahooMovies rating data sets demonstrate that our proposed approach is able to improve the performance of multi-criteria item recommendations.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Recommender systems (RSs) have been successfully applied to alleviate the problem of information overload and assist users' decision makings. Multi-criteria recommender systems is one of the RSs which utilizes users' multiple ratings on different aspects of the items (i.e., multi-criteria ratings) to predict user preferences. Traditional approaches usually predict ratings on each criterion individually and aggregate them together to estimate the user preferences. In this paper, we propose an approach named as "Criteria Chains", where each combination of the criteria can be utilized in a way of contextual situations in order to better predict the multi-criteria ratings. Our experimental results based on the TripAdvisor and YahooMovies rating data sets demonstrate that our proposed approach is able to improve the performance of multi-criteria item recommendations.
标准链:一种新的多标准推荐方法
推荐系统(RSs)已经成功地应用于缓解信息过载问题和辅助用户决策。多标准推荐系统是RSs中的一种,它利用用户对物品不同方面的多重评分(即多标准评分)来预测用户的偏好。传统的方法通常是单独预测每个标准的评分,然后将它们汇总在一起来估计用户的偏好。在本文中,我们提出了一种称为“标准链”的方法,其中每个标准的组合都可以在上下文情境中使用,以便更好地预测多标准评级。我们基于TripAdvisor和YahooMovies评级数据集的实验结果表明,我们提出的方法能够提高多标准项目推荐的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信