Record 1-micron thick QD film photodetectors using intercalated graphene electrodes for high responsivity in the infrared

Wenjun Chen, Seungbae Ahn, C. Ingrosso, A. Panniello, M. Striccoli, G. Bianco, A. Agostiano, G. Bruno, M. Curri, O. Vázquez-Mena
{"title":"Record 1-micron thick QD film photodetectors using intercalated graphene electrodes for high responsivity in the infrared","authors":"Wenjun Chen, Seungbae Ahn, C. Ingrosso, A. Panniello, M. Striccoli, G. Bianco, A. Agostiano, G. Bruno, M. Curri, O. Vázquez-Mena","doi":"10.1117/12.2569809","DOIUrl":null,"url":null,"abstract":"Quantum dots (QDs) have extraordinary strong light absorption and size tunable bandgap. However, QD films are typically limited to ~200-300 nm due to their poor charge mobility. This severely limits the quantum efficiency of QD devices for λ <750 nm (infrared). Herein, we report a record 1 μm thick QD film using intercalated graphene layers as transparent current extractors. This overcomes QD poor mobility, ensuring both effective light absorption and charge extraction towards the near-infrared reaching quantum efficiency (EQE) of 90%. The short diffusion length (LD<200 nm) of QDs limits their useful thickness to ~200-300 nm1–4 , resulting in poor infrared light absorption. To overcome this limitation, we have built a 1 µm thick QD film with intercalated transparent graphene electrodes that keep high charge collection efficiency. As a result, the 1 µm intercalated devices show a superior EQE reaching 90% at λ ~800 nm without the drop of quantum efficiency at λ ~700 nm observed in most QD devices. The EQE of intercalated devices improves over the entire λ~ 600-1100 nm spectrum as the thickness increases from 100 nm to 1 μm, clearly breaking the restriction that the diffusion length of QDs imposes on the film thickness. This improves absorption and charge collection in the infrared.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2569809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots (QDs) have extraordinary strong light absorption and size tunable bandgap. However, QD films are typically limited to ~200-300 nm due to their poor charge mobility. This severely limits the quantum efficiency of QD devices for λ <750 nm (infrared). Herein, we report a record 1 μm thick QD film using intercalated graphene layers as transparent current extractors. This overcomes QD poor mobility, ensuring both effective light absorption and charge extraction towards the near-infrared reaching quantum efficiency (EQE) of 90%. The short diffusion length (LD<200 nm) of QDs limits their useful thickness to ~200-300 nm1–4 , resulting in poor infrared light absorption. To overcome this limitation, we have built a 1 µm thick QD film with intercalated transparent graphene electrodes that keep high charge collection efficiency. As a result, the 1 µm intercalated devices show a superior EQE reaching 90% at λ ~800 nm without the drop of quantum efficiency at λ ~700 nm observed in most QD devices. The EQE of intercalated devices improves over the entire λ~ 600-1100 nm spectrum as the thickness increases from 100 nm to 1 μm, clearly breaking the restriction that the diffusion length of QDs imposes on the film thickness. This improves absorption and charge collection in the infrared.
使用嵌入石墨烯电极记录1微米厚的量子点薄膜光电探测器,在红外中具有高响应性
量子点具有极强的光吸收能力和大小可调的带隙。然而,由于量子点薄膜的电荷迁移率差,它们通常被限制在~200-300 nm。这严重限制了λ <750 nm(红外)的量子点器件的量子效率。在这里,我们报道了一个1 μm厚的量子点薄膜,使用嵌入石墨烯层作为透明电流提取器。这克服了量子点流动性差的问题,确保了近红外的有效光吸收和电荷提取达到90%的量子效率(EQE)。量子点的扩散长度较短(LD<200 nm),限制了其有效厚度在~200-300 nm3 - 4之间,导致其对红外光的吸收较差。为了克服这一限制,我们构建了一个1微米厚的量子点薄膜,其中嵌入了透明石墨烯电极,以保持高电荷收集效率。结果表明,嵌入1µm的器件在λ ~800 nm处的EQE达到90%,而大多数器件在λ ~700 nm处的量子效率没有下降。在整个λ~ 600 ~ 1100 nm光谱范围内,随着厚度从100 nm增加到1 μm,嵌入器件的EQE均有所提高,明显打破了量子点扩散长度对薄膜厚度的限制。这改善了红外吸收和电荷收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信