Ranking in information streams

Steven Bourke, Michael P. O'Mahony, Rachael Rafter, Barry Smyth
{"title":"Ranking in information streams","authors":"Steven Bourke, Michael P. O'Mahony, Rachael Rafter, Barry Smyth","doi":"10.1145/2451176.2451219","DOIUrl":null,"url":null,"abstract":"Information streams allow social network users to receive and interact with the latest messages from friends and followers. But as our social graphs grow and mature it becomes increasingly difficult to deal with the information overload that these realtime streams introduce. Some social networks, like Facebook, use proprietary interestingness metrics to rank messages in an effort to improve stream relevance and drive engagement. In this paper we evaluate learning to rank approaches to rank content based on a variety of features taken from live-user data.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Information streams allow social network users to receive and interact with the latest messages from friends and followers. But as our social graphs grow and mature it becomes increasingly difficult to deal with the information overload that these realtime streams introduce. Some social networks, like Facebook, use proprietary interestingness metrics to rank messages in an effort to improve stream relevance and drive engagement. In this paper we evaluate learning to rank approaches to rank content based on a variety of features taken from live-user data.
信息流中的排名
信息流允许社交网络用户接收来自朋友和追随者的最新消息并与之互动。但随着我们社交图谱的发展和成熟,处理这些实时信息流带来的信息过载变得越来越困难。一些社交网络,如Facebook,使用专有的兴趣指标来对消息进行排名,以提高流相关性并提高参与度。在本文中,我们评估了基于实时用户数据的各种特征对内容进行排名的学习排序方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信