F J Miranda, G Torregrosa, J B Salom, J A Alabadí, C Alvarez, E Alborch
{"title":"Modulatory action of acetylcholine on cerebrovascular sympathetic neurotransmission.","authors":"F J Miranda, G Torregrosa, J B Salom, J A Alabadí, C Alvarez, E Alborch","doi":"10.1016/0306-3623(91)90587-v","DOIUrl":null,"url":null,"abstract":"<p><p>1. Acetylcholine (10 micrograms/min) diminished the electrically-induced cerebral blood flow reductions. Atropine (1-2 mg) partially blocked this inhibitory effect. 2. Exogenously administered noradrenaline (1-10 micrograms) and tyramine (50-500 micrograms) reduced cerebral blood flow but this effect was unchanged by acetylcholine infusion. 3. Acetylcholine inhibited the nonadrenergic component of the electrically-induced contraction at a concentration greater than or equal to 10(-6) M and potentiated the adrenergic component at a concentration greater than or equal to 10(5) M. Atropine 10(-7) M) inhibited both of these effects. In addition, acetylcholine (10(-4) M) enhanced the electrically-evoked [3H]noradrenaline overflow. 4. These results show that: (a) acetylcholine modulates cerebrovascular sympathetic neurotransmission by acting on muscarinic receptors; and (b) the potentiating effect of acetylcholine is achieved by a mechanism involving increases in noradrenaline release.</p>","PeriodicalId":12487,"journal":{"name":"General pharmacology","volume":"22 6","pages":"1115-20"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0306-3623(91)90587-v","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/0306-3623(91)90587-v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
1. Acetylcholine (10 micrograms/min) diminished the electrically-induced cerebral blood flow reductions. Atropine (1-2 mg) partially blocked this inhibitory effect. 2. Exogenously administered noradrenaline (1-10 micrograms) and tyramine (50-500 micrograms) reduced cerebral blood flow but this effect was unchanged by acetylcholine infusion. 3. Acetylcholine inhibited the nonadrenergic component of the electrically-induced contraction at a concentration greater than or equal to 10(-6) M and potentiated the adrenergic component at a concentration greater than or equal to 10(5) M. Atropine 10(-7) M) inhibited both of these effects. In addition, acetylcholine (10(-4) M) enhanced the electrically-evoked [3H]noradrenaline overflow. 4. These results show that: (a) acetylcholine modulates cerebrovascular sympathetic neurotransmission by acting on muscarinic receptors; and (b) the potentiating effect of acetylcholine is achieved by a mechanism involving increases in noradrenaline release.