Node Similarity with q -Grams for Real-World Labeled Networks

A. Conte, Gaspare Ferraro, R. Grossi, Andrea Marino, K. Sadakane, T. Uno
{"title":"Node Similarity with q -Grams for Real-World Labeled Networks","authors":"A. Conte, Gaspare Ferraro, R. Grossi, Andrea Marino, K. Sadakane, T. Uno","doi":"10.1145/3219819.3220085","DOIUrl":null,"url":null,"abstract":"We study node similarity in labeled networks, using the label sequences found in paths of bounded length q leading to the nodes. (This recalls the q-grams employed in document resemblance, based on the Jaccard distance.) When applied to networks, the challenge is two-fold: the number of q-grams generated from labeled paths grows exponentially with q, and their frequency should be taken into account: this leads to a variation of the Jaccard index known as Bray-Curtis index for multisets. We describe nSimGram, a suite of fast algorithms for node similarity with q-grams, based on a novel blend of color coding, probabilistic counting, sketches, and string algorithms, where the universe of elements to sample is exponential. We provide experimental evidence that our measure is effective and our running times scale to deal with large real-world networks.","PeriodicalId":322066,"journal":{"name":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219819.3220085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study node similarity in labeled networks, using the label sequences found in paths of bounded length q leading to the nodes. (This recalls the q-grams employed in document resemblance, based on the Jaccard distance.) When applied to networks, the challenge is two-fold: the number of q-grams generated from labeled paths grows exponentially with q, and their frequency should be taken into account: this leads to a variation of the Jaccard index known as Bray-Curtis index for multisets. We describe nSimGram, a suite of fast algorithms for node similarity with q-grams, based on a novel blend of color coding, probabilistic counting, sketches, and string algorithms, where the universe of elements to sample is exponential. We provide experimental evidence that our measure is effective and our running times scale to deal with large real-world networks.
真实世界标记网络的q -Grams节点相似度
我们使用在有界长度为q的路径上找到的标记序列来研究标记网络中的节点相似性。(这让人想起了基于Jaccard距离的文件相似性中使用的q-grams。)当应用于网络时,挑战是双重的:从标记路径生成的q-g的数量随着q呈指数增长,并且它们的频率应该被考虑在内:这导致了Jaccard指数的变化,即多集的布雷-柯蒂斯指数。我们描述了nSimGram,一套基于颜色编码、概率计数、草图和字符串算法的快速节点相似度算法,其中要采样的元素的范围是指数级的。我们提供的实验证据表明,我们的措施是有效的,我们的运行时间尺度,以处理大型现实世界的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信