Object Recognition Offloading in Augmented Reality Assisted UAV-UGV Systems

Chenyang Wang, Benjamin P. Carlson, Qifeng Han
{"title":"Object Recognition Offloading in Augmented Reality Assisted UAV-UGV Systems","authors":"Chenyang Wang, Benjamin P. Carlson, Qifeng Han","doi":"10.1145/3597060.3597240","DOIUrl":null,"url":null,"abstract":"A multi-UAV-UGV system combines the advantages of both UAVs and UGVs, hence it can be used for challenging missions. When incorporated with Augmented Reality (AR), such a system can better involve humans in the loop to either provide feedback to robots' plans or make informed decisions. One common problem in such a system is object recognition. To conserve energy on the UAVs, offloading part of the computation in object recognition is considered. In this paper, we propose and implement two offloading techniques. We compare them against two baselines: zero offloading (i.e., all local computation) and full offloading (i.e., all offloaded to UGV) by implementing these strategies on the three most popular onboard computers on UAVs: Raspberry Pi 4, Jetson Nano, and Jetson Xavier NX. We use a laptop to represent the onboard computer on a UGV. Our experimental results validate the feasibility and benefit of object recognition task offloading in a multi-UAV-UGV setting and also highlight the need for a more effective offloading strategy.","PeriodicalId":315437,"journal":{"name":"Proceedings of the Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597060.3597240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-UAV-UGV system combines the advantages of both UAVs and UGVs, hence it can be used for challenging missions. When incorporated with Augmented Reality (AR), such a system can better involve humans in the loop to either provide feedback to robots' plans or make informed decisions. One common problem in such a system is object recognition. To conserve energy on the UAVs, offloading part of the computation in object recognition is considered. In this paper, we propose and implement two offloading techniques. We compare them against two baselines: zero offloading (i.e., all local computation) and full offloading (i.e., all offloaded to UGV) by implementing these strategies on the three most popular onboard computers on UAVs: Raspberry Pi 4, Jetson Nano, and Jetson Xavier NX. We use a laptop to represent the onboard computer on a UGV. Our experimental results validate the feasibility and benefit of object recognition task offloading in a multi-UAV-UGV setting and also highlight the need for a more effective offloading strategy.
增强现实辅助无人机- ugv系统中的目标识别卸载
多无人机- ugv系统结合了无人机和ugv的优点,因此它可以用于具有挑战性的任务。当与增强现实(AR)相结合时,这样的系统可以更好地让人类参与到循环中,为机器人的计划提供反馈或做出明智的决定。这种系统的一个常见问题是对象识别。为了节省无人机的能量,在目标识别中考虑卸载部分计算。在本文中,我们提出并实现了两种卸载技术。我们将它们与两个基线进行比较:零卸载(即所有本地计算)和完全卸载(即所有卸载到UGV),通过在无人机上最流行的三种机载计算机上实施这些策略:Raspberry Pi 4, Jetson Nano和Jetson Xavier NX。我们用一台笔记本电脑来代表UGV上的机载计算机。我们的实验结果验证了在多无人机- ugv环境下目标识别任务卸载的可行性和有效性,并强调了更有效的卸载策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信