Power system fault identification and localization using multiple linear regression of principal component distance indices

Alok K. Mukherjee, Palash Kundu, Arabinda Das
{"title":"Power system fault identification and localization using multiple linear regression of principal component distance indices","authors":"Alok K. Mukherjee, Palash Kundu, Arabinda Das","doi":"10.11591/IJAPE.V9.I2.PP113-126","DOIUrl":null,"url":null,"abstract":"This paper is focused on the application of principal component analysis (PCA) to classify and localize power system faults in a three phase, radial, long transmission line using receiving end line currents taken almost at the midpoint of the line length. The PCA scores are analyzed to compute principal component distance index (PCDI) which is further analyzed using a ratio based analysis to develop ratio index matrix (R) and ratio error matrix (RE) and ratio error index (REI) which are used to develop a fault classifier, which produces a 100% correct prediction. The later part of the paper deals with the development of a fault localizer using the same PCDI corresponding to six intermediate training locations, which are analyzed with tool like Multiple Linear Regression (MLR) in order to predict the fault location with significantly high accuracy of only 87 m for a 150 km long radial transmission line.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V9.I2.PP113-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is focused on the application of principal component analysis (PCA) to classify and localize power system faults in a three phase, radial, long transmission line using receiving end line currents taken almost at the midpoint of the line length. The PCA scores are analyzed to compute principal component distance index (PCDI) which is further analyzed using a ratio based analysis to develop ratio index matrix (R) and ratio error matrix (RE) and ratio error index (REI) which are used to develop a fault classifier, which produces a 100% correct prediction. The later part of the paper deals with the development of a fault localizer using the same PCDI corresponding to six intermediate training locations, which are analyzed with tool like Multiple Linear Regression (MLR) in order to predict the fault location with significantly high accuracy of only 87 m for a 150 km long radial transmission line.
基于主成分距离指数多元线性回归的电力系统故障识别与定位
本文主要研究了主成分分析(PCA)在三相径向长传输线上的应用,利用接收端电流几乎取于线路长度的中点,对电力系统故障进行分类和定位。利用主成分距离指数(PCDI)对主成分距离指数进行分析,利用基于比率的分析方法得到比率指数矩阵(R)、比率误差矩阵(RE)和比率误差指数(REI),建立故障分类器,得到100%的预测正确率。本文的后半部分讨论了利用6个中间训练点对应的相同PCDI开发故障定位器,并利用多元线性回归(MLR)等工具对其进行分析,以期对150 km长的径向传输线进行高精度的故障定位,预测精度仅为87 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信