Analysis of stability and convergence for L-type formulas combined with a spatial finite element method for solving subdiffusion problems

Mohadese Ramezani, R. Mokhtari, G. Haase
{"title":"Analysis of stability and convergence for L-type formulas combined with a spatial finite element method for solving subdiffusion problems","authors":"Mohadese Ramezani, R. Mokhtari, G. Haase","doi":"10.1553/etna_vol55s568","DOIUrl":null,"url":null,"abstract":"Abstract. A time-fractional diffusion equation with the Caputo fractional derivative of order α ∈ (0, 1) is considered on a bounded polygonal domain. Some numerical methods are presented based on the finite element method (FEM) in space on a quasi-uniform mesh and L-type discretizations (i.e., L1, L1-2, and L1-2-3 formulas) to approximate the Caputo derivative. Stability and convergence of the L1-2-3 FEM as well as L1-2 FEM are proved rigorously. The lack of positivity of the coefficients of these formulas is the main difficulty in the analysis of the proposed methods. This has hampered the analysis of methods using finite elements mixed with L1-2 and L1-2-3 discretizations. Our proofs are based on the concept of a special kind of discrete Grönwall’s inequality and the energy method. Numerical examples confirm the theoretical analysis.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. A time-fractional diffusion equation with the Caputo fractional derivative of order α ∈ (0, 1) is considered on a bounded polygonal domain. Some numerical methods are presented based on the finite element method (FEM) in space on a quasi-uniform mesh and L-type discretizations (i.e., L1, L1-2, and L1-2-3 formulas) to approximate the Caputo derivative. Stability and convergence of the L1-2-3 FEM as well as L1-2 FEM are proved rigorously. The lack of positivity of the coefficients of these formulas is the main difficulty in the analysis of the proposed methods. This has hampered the analysis of methods using finite elements mixed with L1-2 and L1-2-3 discretizations. Our proofs are based on the concept of a special kind of discrete Grönwall’s inequality and the energy method. Numerical examples confirm the theoretical analysis.
结合空间有限元法求解亚扩散问题的l型公式的稳定性和收敛性分析
摘要在有界多边形域上,考虑一类具有阶为α∈(0,1)的Caputo分数阶导数的时间分数扩散方程。基于空间准均匀网格上的有限元法和l型离散化(即L1、L1-2和L1-2-3公式),提出了几种近似Caputo导数的数值方法。严格证明了L1-2-3有限元法和L1-2有限元法的稳定性和收敛性。这些公式的系数缺乏正性是分析所提出方法的主要困难。这阻碍了使用混合L1-2和L1-2-3离散化的有限元方法的分析。我们的证明是基于一种特殊的离散Grönwall不等式的概念和能量法。数值算例证实了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信