Automatic Database Clustering Using Data Mining

Sylvain Guinepain, L. Gruenwald
{"title":"Automatic Database Clustering Using Data Mining","authors":"Sylvain Guinepain, L. Gruenwald","doi":"10.1109/DEXA.2006.32","DOIUrl":null,"url":null,"abstract":"Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. One way to improve query response time is to reduce the number of disk I/Os by partitioning the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. In this paper we discuss an efficient algorithm for attribute clustering that dynamically and automatically generate attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database","PeriodicalId":282986,"journal":{"name":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. One way to improve query response time is to reduce the number of disk I/Os by partitioning the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. In this paper we discuss an efficient algorithm for attribute clustering that dynamically and automatically generate attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database
使用数据挖掘的自动数据库聚类
由于数据的激增,高效的访问方法和数据存储技术对于维持可接受的查询响应时间变得越来越重要。改善查询响应时间的一种方法是通过垂直(属性集群)和/或水平(记录集群)划分数据库来减少磁盘I/ o的数量。集群是针对给定的查询集进行优化的。然而,在动态系统中,查询随着时间的变化而变化,就地集群变得过时,数据库需要动态地重新集群。本文讨论了一种高效的属性聚类算法,该算法基于从数据库查询中发现的属性集中挖掘的封闭项集,动态自动地生成属性聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信