Deep Learning for Station Keeping of AUVs

Kristoffer Borgen Knudsen, M. C. Nielsen, I. Schjølberg
{"title":"Deep Learning for Station Keeping of AUVs","authors":"Kristoffer Borgen Knudsen, M. C. Nielsen, I. Schjølberg","doi":"10.23919/OCEANS40490.2019.8962598","DOIUrl":null,"url":null,"abstract":"Control of underwater vehicles remains an active research topic within the literature. Multiple challenges exists for controlling an underwater vehicle, including highly nonlinear effects due to hydrodynamics. Control based models seek to model the underlying dynamics but suffer from the balance between tractable computation and performance. Machine Learning (ML) control techniques show promise as an alternative to classical model-based approaches. This article investigates the application of a model-free deep reinforcement learning algorithm, Deep Deterministic Policy Gradient (DDPG), for station keeping in six degrees of freedom (DOF) for an underwater vehicle.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Control of underwater vehicles remains an active research topic within the literature. Multiple challenges exists for controlling an underwater vehicle, including highly nonlinear effects due to hydrodynamics. Control based models seek to model the underlying dynamics but suffer from the balance between tractable computation and performance. Machine Learning (ML) control techniques show promise as an alternative to classical model-based approaches. This article investigates the application of a model-free deep reinforcement learning algorithm, Deep Deterministic Policy Gradient (DDPG), for station keeping in six degrees of freedom (DOF) for an underwater vehicle.
基于深度学习的auv站位保持
水下航行器的控制在文献中仍然是一个活跃的研究课题。水下航行器的控制面临着诸多挑战,其中包括由流体动力学引起的高度非线性效应。基于控制的模型试图对潜在的动态建模,但在可处理的计算和性能之间的平衡受到影响。机器学习(ML)控制技术有望成为经典的基于模型的方法的替代方案。本文研究了一种无模型深度强化学习算法——深度确定性策略梯度(deep Deterministic Policy Gradient, DDPG)在水下航行器六自由度站位保持中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信