EEG feature extraction methods in motor imagery brain computer interface

Fengge Bao, Weiheng Liu
{"title":"EEG feature extraction methods in motor imagery brain computer interface","authors":"Fengge Bao, Weiheng Liu","doi":"10.1117/12.2667875","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) is a link between the human brain and a computer or other peripheral devices for communication and control. The most frequently utilized BCI paradigms at the time are motor imagination (MI) BCI. In the procedure of MI-BCI, one of the most important roles is the feature extraction of EEG signals. This article examines various feature extraction approaches in four distinct domains: time, frequency, time-frequency, and spatial. Various approaches are introduced in each domain, including the ERD/ERS computation, the FFT method, the Wavelet Transform (WT), the Discrete Wavelet Transform (DWT), Common Spatial Patterns (CSP), and Sub-band Common Spatial Patterns (SBCSP). This paper also compares the advantages and disadvantages of different methods in practical application, which can provide reference for future research.","PeriodicalId":128051,"journal":{"name":"Third International Seminar on Artificial Intelligence, Networking, and Information Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Seminar on Artificial Intelligence, Networking, and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interface (BCI) is a link between the human brain and a computer or other peripheral devices for communication and control. The most frequently utilized BCI paradigms at the time are motor imagination (MI) BCI. In the procedure of MI-BCI, one of the most important roles is the feature extraction of EEG signals. This article examines various feature extraction approaches in four distinct domains: time, frequency, time-frequency, and spatial. Various approaches are introduced in each domain, including the ERD/ERS computation, the FFT method, the Wavelet Transform (WT), the Discrete Wavelet Transform (DWT), Common Spatial Patterns (CSP), and Sub-band Common Spatial Patterns (SBCSP). This paper also compares the advantages and disadvantages of different methods in practical application, which can provide reference for future research.
运动图像脑机接口的脑电特征提取方法
脑机接口(BCI)是人脑与计算机或其他外围设备之间进行通信和控制的纽带。目前最常用的脑机接口模式是运动想象脑机接口。在MI-BCI过程中,脑电信号的特征提取是最重要的环节之一。本文研究了四个不同领域的各种特征提取方法:时间、频率、时频和空间。在每个领域中介绍了各种方法,包括ERD/ERS计算,FFT方法,小波变换(WT),离散小波变换(DWT),公共空间模式(CSP)和子带公共空间模式(SBCSP)。本文还比较了不同方法在实际应用中的优缺点,为今后的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信