Sensor Fault Detection in Wind Turbines Using Machine Learning and Statistical Monitoring Chart

F. Harrou, Benamar Bouyeddou, Ying Sun
{"title":"Sensor Fault Detection in Wind Turbines Using Machine Learning and Statistical Monitoring Chart","authors":"F. Harrou, Benamar Bouyeddou, Ying Sun","doi":"10.1109/PHM58589.2023.00069","DOIUrl":null,"url":null,"abstract":"This study proposes a machine learning-based approach for detecting sensor faults in wind turbines. The approach combines the Gaussian process regression (GPR) model and the Exponentially Weighted Moving Average (EWMA) monitoring chart, which provides sensitivity in detecting small shifts in the process mean. The detection threshold is computed using Kernel Density Estimation, which adds flexibility to the EWMA chart. We adopted Bayesian optimization to optimize the hyperparameters of the GPR model based on anomaly-free data. The proposed approach is tested on different sensor faults and compared with support Vector regression-based methods. The results show that the proposed approach effectively detects various types of sensor faults, including sensor faults in pitch angle measurement and generator speed measurement, and outperforms the support Vector regression-based approach.","PeriodicalId":196601,"journal":{"name":"2023 Prognostics and Health Management Conference (PHM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Prognostics and Health Management Conference (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM58589.2023.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a machine learning-based approach for detecting sensor faults in wind turbines. The approach combines the Gaussian process regression (GPR) model and the Exponentially Weighted Moving Average (EWMA) monitoring chart, which provides sensitivity in detecting small shifts in the process mean. The detection threshold is computed using Kernel Density Estimation, which adds flexibility to the EWMA chart. We adopted Bayesian optimization to optimize the hyperparameters of the GPR model based on anomaly-free data. The proposed approach is tested on different sensor faults and compared with support Vector regression-based methods. The results show that the proposed approach effectively detects various types of sensor faults, including sensor faults in pitch angle measurement and generator speed measurement, and outperforms the support Vector regression-based approach.
基于机器学习和统计监测图的风力发电机传感器故障检测
本研究提出了一种基于机器学习的方法来检测风力涡轮机传感器故障。该方法将高斯过程回归(GPR)模型与指数加权移动平均(EWMA)监测图相结合,在检测过程均值的小位移方面具有较高的灵敏度。检测阈值使用核密度估计计算,这增加了EWMA图的灵活性。采用贝叶斯优化方法对无异常GPR模型的超参数进行优化。在不同的传感器故障情况下对该方法进行了测试,并与基于支持向量回归的方法进行了比较。结果表明,该方法能够有效检测各种类型的传感器故障,包括俯仰角测量和发电机转速测量中的传感器故障,并且优于基于支持向量回归的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信