Robust FDI Determinants: Bayesian Model Averaging in the Presence of Selection Bias

T. Eicher, L. Helfman, Alex Lenkoski
{"title":"Robust FDI Determinants: Bayesian Model Averaging in the Presence of Selection Bias","authors":"T. Eicher, L. Helfman, Alex Lenkoski","doi":"10.2139/ssrn.2054934","DOIUrl":null,"url":null,"abstract":"The literature on Foreign Direct Investment (FDI) determinants is remarkably diverse in terms of competing theories and empirical results. We utilize Bayesian Model Averaging (BMA) to resolve the model uncertainty that surrounds the validity of the competing FDI theories. Since the structure of existing FDI data is well known to induce selection bias, we extend BMA theory to HeckitBMA in order to address model uncertainty in the presence of selection bias. We show that more than half of the previously suggested FDI determinants are not robust and highlight theories that do receive robust support from the data. Our selection approach allows us to identify the determinants of the margins of FDI (intensive and extensive), which are shown to differ profoundly. Our results suggest a new emphasis in FDI theories that explicitly identify the dynamics of the intensive and extensive FDI margins.","PeriodicalId":170864,"journal":{"name":"PSN: International Finance & Investment (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: International Finance & Investment (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2054934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

The literature on Foreign Direct Investment (FDI) determinants is remarkably diverse in terms of competing theories and empirical results. We utilize Bayesian Model Averaging (BMA) to resolve the model uncertainty that surrounds the validity of the competing FDI theories. Since the structure of existing FDI data is well known to induce selection bias, we extend BMA theory to HeckitBMA in order to address model uncertainty in the presence of selection bias. We show that more than half of the previously suggested FDI determinants are not robust and highlight theories that do receive robust support from the data. Our selection approach allows us to identify the determinants of the margins of FDI (intensive and extensive), which are shown to differ profoundly. Our results suggest a new emphasis in FDI theories that explicitly identify the dynamics of the intensive and extensive FDI margins.
稳健的FDI决定因素:存在选择偏差的贝叶斯模型平均
关于外国直接投资(FDI)决定因素的文献在相互竞争的理论和实证结果方面是非常多样化的。我们利用贝叶斯模型平均(BMA)来解决围绕相互竞争的FDI理论有效性的模型不确定性。由于现有FDI数据的结构众所周知会诱发选择偏差,我们将BMA理论扩展到HeckitBMA,以解决存在选择偏差时的模型不确定性。我们发现,在之前提出的FDI决定因素中,有一半以上是不稳健的,并强调了那些确实得到数据有力支持的理论。我们的选择方法使我们能够确定外国直接投资(集约型和广泛型)边际的决定因素,这些决定因素的差异很大。我们的研究结果表明,FDI理论的一个新的重点是明确地确定密集和广泛的FDI边际的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信