Software Development to Detecting the use of Mask using Convolutional Neural Networks

Pandu Setiawan, Yulius Denny Prabowo
{"title":"Software Development to Detecting the use of Mask using Convolutional Neural Networks","authors":"Pandu Setiawan, Yulius Denny Prabowo","doi":"10.1109/ICITE54466.2022.9759900","DOIUrl":null,"url":null,"abstract":"This research aims to develop software that can detect faces that use masks, do not use masks, and use masks in incorrect positions with the TensorFlow library applying the Convolutional Neural Network (CNN) method. The software development method used is the Incremental Method. Incremental one focuses on building a CNN model using the evaluation of the confusion matrix and incremental two focuses on developing a software display using black box testing. The result in incremental one is a CNN model with a confusion matrix evaluation resulting in a model that has 98.83% accuracy, 98.84% precision, 98.78% recall, and 98.81% fl-score. The second incremental result is the display of the software that has been black box tested and is ready to be used for detection. The final result of this research is software that can detect human face objects using masks, not using masks, and using masks in the incorrect position","PeriodicalId":123775,"journal":{"name":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Information Technology and Education (ICIT&E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE54466.2022.9759900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research aims to develop software that can detect faces that use masks, do not use masks, and use masks in incorrect positions with the TensorFlow library applying the Convolutional Neural Network (CNN) method. The software development method used is the Incremental Method. Incremental one focuses on building a CNN model using the evaluation of the confusion matrix and incremental two focuses on developing a software display using black box testing. The result in incremental one is a CNN model with a confusion matrix evaluation resulting in a model that has 98.83% accuracy, 98.84% precision, 98.78% recall, and 98.81% fl-score. The second incremental result is the display of the software that has been black box tested and is ready to be used for detection. The final result of this research is software that can detect human face objects using masks, not using masks, and using masks in the incorrect position
软件开发利用卷积神经网络来检测掩码
本研究旨在利用卷积神经网络(CNN)方法,利用TensorFlow库开发能够检测使用掩模、不使用掩模以及在不正确位置使用掩模的人脸的软件。使用的软件开发方法是增量方法。增量一侧重于使用混淆矩阵的评估构建CNN模型,增量二侧重于使用黑盒测试开发软件显示。增量一的结果是一个CNN模型,通过混淆矩阵评估,得到一个准确率为98.83%,精密度为98.84%,召回率为98.78%,fl-score为98.81%的模型。第二个增量结果是显示已经过黑盒测试并准备用于检测的软件。本研究的最终结果是能够检测出使用口罩、不使用口罩以及在错误位置使用口罩的人脸物体的软件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信