Efficient code caching to improve performance and energy consumption for java applications

Yu Sun, Wei Zhang
{"title":"Efficient code caching to improve performance and energy consumption for java applications","authors":"Yu Sun, Wei Zhang","doi":"10.1145/1450095.1450115","DOIUrl":null,"url":null,"abstract":"Java applications rely on Just-In-Time (JIT) compilers or adaptive compilers to generate and optimize binary code at runtime to boost performance. In conventional Java Virtual Machines (JVM), however, the binary code is typically written into the data cache, and then is loaded into the instruction cache through the shared L2 cache or memory, which is not efficient in terms of both time and energy. In this paper, we study three hardware-based code caching strategies to write and read the dynamically generated code faster and more energy-efficiently. Our experimental results indicate that writing code directly into the instruction cache can improve the performance of a variety of Java applications by 9.6% on average, and up to 42.9%. Also, the overall energy dissipation of these Java programs can be reduced by 6% on average.","PeriodicalId":136293,"journal":{"name":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450095.1450115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Java applications rely on Just-In-Time (JIT) compilers or adaptive compilers to generate and optimize binary code at runtime to boost performance. In conventional Java Virtual Machines (JVM), however, the binary code is typically written into the data cache, and then is loaded into the instruction cache through the shared L2 cache or memory, which is not efficient in terms of both time and energy. In this paper, we study three hardware-based code caching strategies to write and read the dynamically generated code faster and more energy-efficiently. Our experimental results indicate that writing code directly into the instruction cache can improve the performance of a variety of Java applications by 9.6% on average, and up to 42.9%. Also, the overall energy dissipation of these Java programs can be reduced by 6% on average.
高效的代码缓存,以提高java应用程序的性能和能耗
Java应用程序依靠即时(JIT)编译器或自适应编译器在运行时生成和优化二进制代码以提高性能。然而,在传统的Java虚拟机(JVM)中,二进制代码通常被写入数据缓存,然后通过共享L2缓存或内存加载到指令缓存中,这在时间和精力方面都不高效。在本文中,我们研究了三种基于硬件的代码缓存策略,以更快、更节能地读写动态生成的代码。我们的实验结果表明,直接将代码写入指令缓存可以使各种Java应用程序的性能平均提高9.6%,最高可提高42.9%。此外,这些Java程序的总体能耗平均可以降低6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信