Feature Selection Using Autoencoders

Dhananjay Tomar, Yamuna Prasad, M. Thakur, K. K. Biswas
{"title":"Feature Selection Using Autoencoders","authors":"Dhananjay Tomar, Yamuna Prasad, M. Thakur, K. K. Biswas","doi":"10.1109/MLDS.2017.20","DOIUrl":null,"url":null,"abstract":"Feature selection plays a vital role in improving the generalization accuracy in many classification tasks where datasets are high-dimensional. In feature selection, a minimal subset of relevant as well as non-redundant features is selected. Autoencoders are used to represent the datasets from original feature space to a reduced and more informative feature space. In this paper, we propose a novel approach for feature selection by traversing back the autoencoders through more probable links. Experiments on five publicly available large datasets show that our approach gives significant gains in accuracy over most of the state-of-the-art feature selection methods.","PeriodicalId":248656,"journal":{"name":"2017 International Conference on Machine Learning and Data Science (MLDS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Machine Learning and Data Science (MLDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLDS.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Feature selection plays a vital role in improving the generalization accuracy in many classification tasks where datasets are high-dimensional. In feature selection, a minimal subset of relevant as well as non-redundant features is selected. Autoencoders are used to represent the datasets from original feature space to a reduced and more informative feature space. In this paper, we propose a novel approach for feature selection by traversing back the autoencoders through more probable links. Experiments on five publicly available large datasets show that our approach gives significant gains in accuracy over most of the state-of-the-art feature selection methods.
使用自动编码器进行特征选择
在许多高维数据集的分类任务中,特征选择对提高泛化精度起着至关重要的作用。在特征选择中,选择最小的相关和非冗余特征子集。使用自编码器将数据集从原始特征空间表示为简化后的、信息量更大的特征空间。在本文中,我们提出了一种新的特征选择方法,即通过更可能的链接遍历自编码器。在五个公开可用的大型数据集上的实验表明,我们的方法比大多数最先进的特征选择方法的准确性有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信