Integrated segmentation and motion analysis of cardiac MR images using a subject-specific dynamical model

Yun Zhu, X. Papademetris, A. Sinusas, J. Duncan
{"title":"Integrated segmentation and motion analysis of cardiac MR images using a subject-specific dynamical model","authors":"Yun Zhu, X. Papademetris, A. Sinusas, J. Duncan","doi":"10.1109/CVPRW.2008.4563007","DOIUrl":null,"url":null,"abstract":"In this paper we propose an integrated cardiac segmentation and motion tracking algorithm. First, we present a subject-specific dynamical model (SSDM) that simultaneously handles inter-subject variability and temporal dynamics (intra-subject variability), such that it can progressively identify the subject vector associated with a new cardiac sequence, and use this subject vector to predict the subject-specific segmentation of the future frames based on the shapes observed in earlier frames. Second, we use the segmentation as a guide in selecting feature points with significant shape characteristics, and invoke the generalized robust point matching (G-RPM) strategy with boundary element method (BEM)-based regularization model to estimate physically realistic displacement field in a computationally efficient way. The integrated algorithm is formulated in a recursive Bayesian framework that sequentially segments cardiac images and estimates myocardial displacements. ldquoLeave-one-outrdquo validation on 32 sequences demonstrates that the segmentation results are improved when the SSDM is used, and the tracking results are much more accurate when the segmentation module is added.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we propose an integrated cardiac segmentation and motion tracking algorithm. First, we present a subject-specific dynamical model (SSDM) that simultaneously handles inter-subject variability and temporal dynamics (intra-subject variability), such that it can progressively identify the subject vector associated with a new cardiac sequence, and use this subject vector to predict the subject-specific segmentation of the future frames based on the shapes observed in earlier frames. Second, we use the segmentation as a guide in selecting feature points with significant shape characteristics, and invoke the generalized robust point matching (G-RPM) strategy with boundary element method (BEM)-based regularization model to estimate physically realistic displacement field in a computationally efficient way. The integrated algorithm is formulated in a recursive Bayesian framework that sequentially segments cardiac images and estimates myocardial displacements. ldquoLeave-one-outrdquo validation on 32 sequences demonstrates that the segmentation results are improved when the SSDM is used, and the tracking results are much more accurate when the segmentation module is added.
综合分割和运动分析的心脏磁共振图像使用特定主题的动态模型
本文提出了一种综合的心脏分割和运动跟踪算法。首先,我们提出了一个主体特定的动态模型(SSDM),它可以同时处理主体间的可变性和时间动态(主体内的可变性),这样它就可以逐步识别与新的心脏序列相关的主体向量,并使用这个主体向量来预测基于早期帧中观察到的形状的未来帧的主体特定分割。其次,以分割为指导,选择具有重要形状特征的特征点,并利用基于边界元法(BEM)正则化模型的广义鲁棒点匹配(G-RPM)策略,以高效的计算方式估计物理真实位移场。该集成算法是在一个递归贝叶斯框架中制定的,该框架依次分割心脏图像并估计心肌位移。对32个序列的ldquoleave -one- outdquo验证表明,使用SSDM后,分割结果得到了改善,添加分割模块后,跟踪结果更加准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信